Abstract

A facile polymethyl methacrylate-assisted turnover-transfer approach is developed to fabricate uniform hexagonal gold nanobowl arrays. The bare array shows inferior light trapping ability compared to its inverted counterpart (a gold nanospherical shell array). Surprisingly, after being coated with a 60-nm thick amorphous silicon film, an anomalous light trapping enhancement is observed with a significantly enhanced average absorption (82%), while for the inverted nanostructure, the light trapping becomes greatly weakened with an average absorption of only 66%. Systematic experimental and theoretical results show that the main reason for the opposite light trapping behaviors lies in the top amorphous silicon coating, which plays an important role in mediating the excitation of surface plasmon polaritons and the electric field distributions in both nanostructures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Symmetry-breaking nanostructures on crystalline silicon for enhanced light trapping in thin film solar cells

Seok Jun Han, Swapnadip Ghosh, Omar K. Abudayyeh, Brittany R. Hoard, Ethan C. Culler, Jose E. Bonilla, Sang M. Han, and Sang Eon Han
Opt. Express 24(26) A1586-A1596 (2016)

Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures

S. Abdellatif, K. Kirah, R. Ghannam, A. S. G. Khalil, and W. Anis
Appl. Opt. 54(17) 5534-5541 (2015)

Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu
Appl. Opt. 53(6) 1159-1165 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  3. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
    [Crossref] [PubMed]
  4. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
    [Crossref]
  5. S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
    [Crossref] [PubMed]
  6. L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, “Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy,” Chin. Phys. Lett. 28(5), 057801 (2011).
    [Crossref]
  7. J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
    [Crossref] [PubMed]
  8. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
    [Crossref] [PubMed]
  9. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [Crossref] [PubMed]
  10. L. Johnson and D. A. Walsh, “Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material,” J. Mater. Chem. 21(21), 7555–7558 (2011).
    [Crossref]
  11. J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
    [Crossref]
  12. K. Chi, L. Yang, Z. Liu, P. Gao, J. Ye, and S. He, “Large-scale nanostructured low-temperature solar selective absorber,” Opt. Lett. 42(10), 1891–1894 (2017).
    [Crossref] [PubMed]
  13. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  14. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
    [Crossref] [PubMed]
  15. L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
    [Crossref] [PubMed]
  16. P. Kou, L. Yang, K. Chi, and S. He, “Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates,” Opt. Mater. Express 5(10), 2347–2358 (2015).
    [Crossref]
  17. P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7, 42052 (2017).
    [Crossref] [PubMed]
  18. Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano 6(8), 6706–6716 (2012).
    [Crossref] [PubMed]
  19. P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
    [Crossref] [PubMed]
  20. X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
    [Crossref] [PubMed]
  21. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
    [Crossref]
  22. Y. Li, J. Pan, P. Zhan, S. Zhu, N. Ming, Z. Wang, W. Han, X. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
    [Crossref] [PubMed]
  23. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
    [Crossref] [PubMed]
  24. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82(12), 125430 (2010).
    [Crossref]
  25. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
    [Crossref] [PubMed]
  26. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
    [Crossref] [PubMed]
  27. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref] [PubMed]

2017 (2)

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7, 42052 (2017).
[Crossref] [PubMed]

K. Chi, L. Yang, Z. Liu, P. Gao, J. Ye, and S. He, “Large-scale nanostructured low-temperature solar selective absorber,” Opt. Lett. 42(10), 1891–1894 (2017).
[Crossref] [PubMed]

2015 (3)

P. Kou, L. Yang, K. Chi, and S. He, “Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates,” Opt. Mater. Express 5(10), 2347–2358 (2015).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

2012 (4)

Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano 6(8), 6706–6716 (2012).
[Crossref] [PubMed]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

2011 (4)

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

L. Johnson and D. A. Walsh, “Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material,” J. Mater. Chem. 21(21), 7555–7558 (2011).
[Crossref]

L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, “Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy,” Chin. Phys. Lett. 28(5), 057801 (2011).
[Crossref]

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

2010 (4)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82(12), 125430 (2010).
[Crossref]

Y. Li, J. Pan, P. Zhan, S. Zhu, N. Ming, Z. Wang, W. Han, X. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref] [PubMed]

2009 (2)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

2008 (1)

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

2006 (4)

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
[Crossref]

2005 (1)

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Abdelsalam, M.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Abdelsalam, M. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

Ahmed, S.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Alexander, D. T. L.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

An, J.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Aubry, A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82(12), 125430 (2010).
[Crossref]

Ballif, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bartlett, P. N.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Battaglia, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Baumberg, J. J.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Boccard, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Borghs, G.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano 6(8), 6706–6716 (2012).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Chang, C.

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7, 42052 (2017).
[Crossref] [PubMed]

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, L.

L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, “Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy,” Chin. Phys. Lett. 28(5), 057801 (2011).
[Crossref]

Chi, K.

Cintra, S.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Cole, R. M.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cui, Y.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Dai, Z.

Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano 6(8), 6706–6716 (2012).
[Crossref] [PubMed]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Dong, H.

J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
[Crossref]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Duan, G.

Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano 6(8), 6706–6716 (2012).
[Crossref] [PubMed]

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Fan, B.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Gao, P.

K. Chi, L. Yang, Z. Liu, P. Gao, J. Ye, and S. He, “Large-scale nanostructured low-temperature solar selective absorber,” Opt. Lett. 42(10), 1891–1894 (2017).
[Crossref] [PubMed]

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Goldberg, B. B.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Han, W.

Hao, Y.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Haug, F. J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

He, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

He, S.

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Jia, L.

Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano 6(8), 6706–6716 (2012).
[Crossref] [PubMed]

Jiang, X.

Jiao, L.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Johnson, L.

L. Johnson and D. A. Walsh, “Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material,” J. Mater. Chem. 21(21), 7555–7558 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kelf, T. A.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Kitt, A.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Kou, P.

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7, 42052 (2017).
[Crossref] [PubMed]

P. Kou, L. Yang, K. Chi, and S. He, “Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates,” Opt. Mater. Express 5(10), 2347–2358 (2015).
[Crossref]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Lei, D. Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82(12), 125430 (2010).
[Crossref]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Li, S.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Li, X.

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Li, Y.

Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano 6(8), 6706–6716 (2012).
[Crossref] [PubMed]

Y. Li, J. Pan, P. Zhan, S. Zhu, N. Ming, Z. Wang, W. Han, X. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref] [PubMed]

Li, Y. M.

J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
[Crossref]

Liu, F. X.

L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, “Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy,” Chin. Phys. Lett. 28(5), 057801 (2011).
[Crossref]

Liu, J. B.

J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
[Crossref]

Liu, Z.

K. Chi, L. Yang, Z. Liu, P. Gao, J. Ye, and S. He, “Large-scale nanostructured low-temperature solar selective absorber,” Opt. Lett. 42(10), 1891–1894 (2017).
[Crossref] [PubMed]

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Luo, Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Maes, G.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Magnuson, C. W.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Mahajan, S.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Maier, S. A.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82(12), 125430 (2010).
[Crossref]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Ming, N.

Ming, N. B.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Pan, J.

L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, “Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy,” Chin. Phys. Lett. 28(5), 057801 (2011).
[Crossref]

Y. Li, J. Pan, P. Zhan, S. Zhu, N. Ming, Z. Wang, W. Han, X. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref] [PubMed]

Pendry, J. B.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82(12), 125430 (2010).
[Crossref]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Polman, A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Ruoff, R. S.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Russell, A. E.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sheng, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Sugawara, Y.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Suk, J. W.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Sun, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Swan, A. K.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Van Dorpe, P.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Van Roy, W.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Walsh, D. A.

L. Johnson and D. A. Walsh, “Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material,” J. Mater. Chem. 21(21), 7555–7558 (2011).
[Crossref]

Wang, D.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

Wang, H. T.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Wang, Z.

Wang, Z. L.

L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, “Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy,” Chin. Phys. Lett. 28(5), 057801 (2011).
[Crossref]

J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
[Crossref]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wu, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Wu, Z.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Xian, X.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Yang, L.

Yang, X.

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Ye, J.

K. Chi, L. Yang, Z. Liu, P. Gao, J. Ye, and S. He, “Large-scale nanostructured low-temperature solar selective absorber,” Opt. Lett. 42(10), 1891–1894 (2017).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Yu, T.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Zhan, P.

L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, “Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy,” Chin. Phys. Lett. 28(5), 057801 (2011).
[Crossref]

Y. Li, J. Pan, P. Zhan, S. Zhu, N. Ming, Z. Wang, W. Han, X. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref] [PubMed]

J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
[Crossref]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Zhang, J.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

Zhou, J.

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

Zhou, S.

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Zhu, M. W.

J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
[Crossref]

Zhu, S.

Zhu, S. N.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Zi, J.

Y. Li, J. Pan, P. Zhan, S. Zhu, N. Ming, Z. Wang, W. Han, X. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

ACS Nano (4)

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random,” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, “Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface,” ACS Nano 6(8), 6706–6716 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Chin. Phys. Lett. (1)

L. Chen, F. X. Liu, P. Zhan, J. Pan, and Z. L. Wang, “Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy,” Chin. Phys. Lett. 28(5), 057801 (2011).
[Crossref]

Faraday Discuss. (1)

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132(0), 191–199 (2006).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[Crossref] [PubMed]

J. Mater. Chem. (1)

L. Johnson and D. A. Walsh, “Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material,” J. Mater. Chem. 21(21), 7555–7558 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. B. Liu, H. Dong, Y. M. Li, P. Zhan, M. W. Zhu, and Z. L. Wang, “A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology,” Jpn. J. Appl. Phys. 45(20), L582–L584 (2006).
[Crossref]

Langmuir (1)

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Nano Lett. (4)

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15(7), 4591–4598 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, and J. Ye, “Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays,” Nanoscale Res. Lett. 10(1), 988 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[Crossref]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder,” Phys. Rev. B 82(12), 125430 (2010).
[Crossref]

Phys. Rev. Lett. (3)

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Kou, L. Yang, C. Chang, and S. He, “Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach,” Sci. Rep. 7, 42052 (2017).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the fabrication procedure of Au nanobowl arrays: ① Sputtering deposition of a Au film on top of the self-assembled PS nanospheres; ② Spin-coating of a PMMA layer; ③ Disassociation of the top three-layer film from the Si substrate in a hot sodium hydroxide aqueous solution (first critical step); ④ Turning the floating three-layer film over (second critical step); ⑤ Lifting the inverted film up by a pre-cleaned glass substrate; ⑥ Removal of the PS nanospheres with cyclohexane.

Fig. 2
Fig. 2

SEM images of a Au nanobowl array: (a) before a-Si deposition (top inset: a zoomed-in image; bottom inset: a folding area), (b) after deposition of a 60-nm thick a-Si coating, (c) FIB milled cross-section (inset: a zoomed-in image); SEM images of a Au nanospherical shell array: (d) before a-Si deposition (inset: a cross-sectional image), (e) after deposition of a 60-nm thick a-Si coating (A Au film is deposited to improve the conductivity and for clear inspection. It is too thin to be continuous but fortunately does not affect inspection.), (f) FIB milled cross-section.

Fig. 3
Fig. 3

Measured (a,d) absorption, (b,e) reflection and (c,f) transmission spectra of the fabricated Au nanobowl array (red), Au nanospherical shell array (black), and a flat Au film with the same thickness (blue) before (top row) and after (bottom row) deposition of a 60-nm thick a-Si film. The corresponding optical responses for a glass substrate coated with a 60-nm thick a-Si film (green) are also characterized and plotted in (d-f).

Fig. 4
Fig. 4

The effect of a-Si coating thickness on the absorption spectra for (a) the Au nanobowl array and (b) the Au nanospherical shell array, as well as (c) their average absorption over the measured wavelength range.

Fig. 5
Fig. 5

3D schematic diagrams used in the simulation of (a,b) a Au nanobowl array and (d,e) a Au nanospherical shell array (a,d) before and (b,e) after the a-Si deposition. 2D illustrations of a-Si coatings (c) within adjacent Au nanobowls and (f) on top of Au nanospherical shells.

Fig. 6
Fig. 6

Simulated average absorption as a function of a-Si coating thickness for the hybrid nanostructures based on Au nanobowl array (red circle) and Au nanospherical shell array (black square) for (a) x- and (b) y-polarizations. The simulated absorption spectra of the Au nanobowl array (red) and Au nanospherical shell array (black) (b,e) without a-Si coating and (c,f) with a 78.6-nm thick a-Si coating for both (b,c) x- and (e,f) y-polarizations.

Fig. 7
Fig. 7

Simulated electric field distributions at wavelengths of 500, 608, 659, 782 nm in the xz plane for x-polarization of a Au nanobowl array (a) without and (b) with a 78.6-nm thick a-Si coating; as well as a Au nanospherical shell array (c) without and (d) with a 78.6-nm thick a-Si.

Metrics