Abstract

We demonstrate a biocompatible optofluidic laser with an edible liquid laser gain medium, made of riboflavin dissolved in water. The proposed laser platform is based on a pulled-glass-capillary optofluidic ring resonator (OFRR) with a high Q-factor, resulting in a lasing threshold comparable to that of conventional organic dye lasers that are mostly harmful, despite the relatively low quantum yield of the riboflavin. The proposed biocompatible laser can be realized by not only a capillary OFRR, but also by an optical-fiber-based OFRR that offers improved mechanical stability, and is promising technology for application to in vivo bio-sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Versatile optofluidic ring resonator lasers based on microdroplets

Wonsuk Lee, Yunhan Luo, Qiran Zhu, and Xudong Fan
Opt. Express 19(20) 19668-19674 (2011)

Versatile opto-fluidic ring resonator lasers with ultra-low threshold

Scott Lacey, Ian M. White, Yuze Sun, Siyka I. Shopova, Jay M. Cupps, Po Zhang, and Xudong Fan
Opt. Express 15(23) 15523-15530 (2007)

PDMS embedded opto-fluidic microring resonator lasers

Jonathan D. Suter, Yuze Sun, Daniel J. Howard, John A. Viator, and Xudong Fan
Opt. Express 16(14) 10248-10253 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  2. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
    [Crossref]
  3. Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
    [Crossref] [PubMed]
  4. X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
    [Crossref] [PubMed]
  5. W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
    [Crossref] [PubMed]
  6. B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
    [Crossref]
  7. T. W. Hansch, “Edible lasers and other delights of the 1970s,” Opt. Photonics News 16(2), 14–16 (2005).
  8. C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
    [Crossref] [PubMed]
  9. Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
    [Crossref] [PubMed]
  10. M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
    [Crossref]
  11. Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3(8), 809 (2016).
    [Crossref]
  12. S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25(41), 5943–5947 (2013).
    [Crossref] [PubMed]
  13. J. A. Rivera and J. G. Eden, “Flavin mononucleotide biomolecular laser: longitudinal mode structure, polarization, and temporal characteristics as probes of local chemical environment,” Opt. Express 24(10), 10858–10868 (2016).
    [Crossref] [PubMed]
  14. H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235(4-6), 401–407 (2004).
    [Crossref]
  15. S. I. Shopova, H. Zhu, and X. Fan, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
    [Crossref]
  16. H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6(1), 32668 (2016).
    [Crossref] [PubMed]
  17. C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
    [Crossref] [PubMed]
  18. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]

2016 (4)

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3(8), 809 (2016).
[Crossref]

J. A. Rivera and J. G. Eden, “Flavin mononucleotide biomolecular laser: longitudinal mode structure, polarization, and temporal characteristics as probes of local chemical environment,” Opt. Express 24(10), 10858–10868 (2016).
[Crossref] [PubMed]

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6(1), 32668 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref] [PubMed]

2014 (1)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

2013 (2)

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25(41), 5943–5947 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

2011 (1)

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

2008 (2)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

S. I. Shopova, H. Zhu, and X. Fan, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

2006 (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2005 (1)

T. W. Hansch, “Edible lasers and other delights of the 1970s,” Opt. Photonics News 16(2), 14–16 (2005).

2004 (2)

C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
[Crossref] [PubMed]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235(4-6), 401–407 (2004).
[Crossref]

2003 (1)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

An, K.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235(4-6), 401–407 (2004).
[Crossref]

Arnold, G.

C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Boehnke, C.

C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
[Crossref] [PubMed]

Chandrahalim, H.

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6(1), 32668 (2016).
[Crossref] [PubMed]

Chen, Q.

Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3(8), 809 (2016).
[Crossref]

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

Chen, Y.-C.

Choi, Y.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref] [PubMed]

Eden, J. G.

Einhäupl, K. M.

C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
[Crossref] [PubMed]

Fan, X.

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6(1), 32668 (2016).
[Crossref] [PubMed]

Y.-C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3(8), 809 (2016).
[Crossref]

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

S. I. Shopova, H. Zhu, and X. Fan, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Flach, U.

C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
[Crossref] [PubMed]

Gather, M. C.

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25(41), 5943–5947 (2013).
[Crossref] [PubMed]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Hansch, T. W.

T. W. Hansch, “Edible lasers and other delights of the 1970s,” Opt. Photonics News 16(2), 14–16 (2005).

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Jeon, H.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref] [PubMed]

Kim, S.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref] [PubMed]

Kristensen, A.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Lee, J.-H.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235(4-6), 401–407 (2004).
[Crossref]

Lee, S.-B.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235(4-6), 401–407 (2004).
[Crossref]

Lee, W.

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

Lemmer, U.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Li, Z.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
[Crossref]

Maier-Flaig, F.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Moon, H.-J.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235(4-6), 401–407 (2004).
[Crossref]

Nizamoglu, S.

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25(41), 5943–5947 (2013).
[Crossref] [PubMed]

Park, G.-W.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235(4-6), 401–407 (2004).
[Crossref]

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Rand, S. C.

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6(1), 32668 (2016).
[Crossref] [PubMed]

Reuter, U.

C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
[Crossref] [PubMed]

Rivera, J. A.

Schuh-Hofer, S.

C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
[Crossref] [PubMed]

Shopova, S. I.

S. I. Shopova, H. Zhu, and X. Fan, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Sun, Y.

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

Vannahme, C.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yoon, D. K.

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

Yun, S. H.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25(41), 5943–5947 (2013).
[Crossref] [PubMed]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Zhu, H.

S. I. Shopova, H. Zhu, and X. Fan, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Adv. Mater. (1)

S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater. 25(41), 5943–5947 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. I. Shopova, H. Zhu, and X. Fan, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Eur. J. Neurol. (1)

C. Boehnke, U. Reuter, U. Flach, S. Schuh-Hofer, K. M. Einhäupl, and G. Arnold, “High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre,” Eur. J. Neurol. 11(7), 475–477 (2004).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Lab Chip (3)

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluidics 4(1-2), 145–158 (2008).
[Crossref]

Nat. Methods (2)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Opt. Commun. 235(4-6), 401–407 (2004).
[Crossref]

Opt. Express (1)

Opt. Photonics News (1)

T. W. Hansch, “Edible lasers and other delights of the 1970s,” Opt. Photonics News 16(2), 14–16 (2005).

Optica (1)

Sci. Rep. (1)

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6(1), 32668 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the optical setup for measuring the laser emission from our OFRR laser with edible liquid gain medium. An external OPO pump light (wavelength = 485 nm) is focused on the glass capillary OFRR filled with riboflavin water solution through a confocal setup, and the laser emission is simultaneously collected by the spectrometer. The long pass filter (>500 nm) allows collection of only the laser emission from the riboflavin laser, without the scattered OPO pump light. (b) The glass capillary OFRR supports the whispering gallery mode (WGM) along its circumference, and the evanescent field of the confined light interacts with the liquid laser gain medium, providing feedback for lasing. (c) Photograph of the working OFRR laser.

Fig. 2
Fig. 2

Representative laser emission spectrum of our OFRR laser when the pump energy density is 96 µJ/mm2. The spectrum exhibits the typical multi-mode lasing characteristic of the ring resonator laser with a free spectral range of 1.2 nm, which matches well with calculations made using the measured dimensions of the glass capillary OFRR.

Fig. 3
Fig. 3

Spectrally integrated laser emission intensities as a function of the pump energy densities. The red data set indicates when the concentration of riboflavin in water is 1 mM; the blue data set is for 0.5 mM concentration. The lasing thresholds of the two approximated from the linear fitting curves are 15.2 µJ/mm2 and 46.3 µJ/mm2, respectively. The lasing efficiency also shows a 7-fold decrease for the 0.5 mM laser. It is difficult to obtain laser emission when the riboflavin concentration is lower than 0.5 mM, even with excessively high pump energy density.

Fig. 4
Fig. 4

(a) Schematic of the optical-fiber-based OFRR laser (b) Laser emission spectra when the pump energy density is 122 µJ/mm2. (c) Spectrally integrated laser emission intensity as a function of the pump energy density. The lasing threshold is approximately 29.5 µJ/mm2.

Metrics