Abstract

The realization of ultrabroadband absorption is a fundamental part of a thermal emitter, especially in the application of radiative cooling. This study involved proposing and systematically analyzing a novel structure termed as an embedded metal-dielectric-metal (EMDM) structure. The results in the case of an individual resonator indicated that the EMDM resonator displayed a broader full width at half maximum (FWHM) that was 1.9 times that of the metal-dielectric-metal (MDM) resonator due to mode matching at the terminated end and enhanced scattering intensity. With respect to the case of periodic resonators, single-sized periodic EMDM resonators are employed to achieve a broader FWHM that is 3.8 times that of the MDM resonators. In addition, a strong coupling effect is confirmed between localized MDM and hybrid modes. An application of lossy-dielectric based periodic three-dimensional EMDM resonators indicated that an average absorptivity of 0.85 in the entire atmospheric window (8–13 μm). The results revealed the potential of EMDM structures for radiative cooling devices and other ultrabroadband absorbers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metal-dielectric-metal based narrow band absorber for sensing applications

Xiaoyuan Lu, Rengang Wan, and Tongyi Zhang
Opt. Express 23(23) 29842-29847 (2015)

Plasmonic metal–dielectric–metal stack structure with subwavelength metallic gratings for improving sensor sensitivity and signal quality

Sherif H. El-Gohary, Jong Min Choi, Nak-Hyeon Kim, and Kyung Min Byun
Appl. Opt. 53(10) 2152-2157 (2014)

Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity

Janardan Nath, Sushrut Modak, Imen Rezadad, Deep Panjwani, Farnood Rezaie, Justin W. Cleary, and Robert E. Peale
Opt. Express 23(16) 20366-20380 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. J. B. Pendry, “Negative Refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  3. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  4. N. Xingjie, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
  5. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [Crossref] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  7. M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [Crossref] [PubMed]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  9. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  10. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  11. C. Koechlin, P. Bouchon, F. Pardo, J. L. Pelouard, and R. Haïdar, “Analytical description of subwavelength plasmonic MIM resonators and of their combination,” Opt. Express 21(6), 7025–7032 (2013).
    [Crossref] [PubMed]
  12. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [Crossref] [PubMed]
  13. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  14. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  15. M. M. Hossain and M. Gu, “Radiative cooling: Principles, progress, and potentials,” Adv Sci (Weinh) 3(7), 1500360 (2016).
    [Crossref] [PubMed]
  16. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  17. A. R. Gentle and G. B. Smith, “A subambient open roof surface under the Mid‐Summer sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
    [Crossref] [PubMed]
  18. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
    [Crossref] [PubMed]
  19. J. L. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
    [Crossref]
  20. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [PubMed]
  21. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  22. B. Orel, M. K. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
    [Crossref]
  23. Y. K. Zhong, S. M. Fu, S. L. Yan, P. Y. Chen, and A. Lin, “Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells,” IEEE Photonics J. 7(4), 1–12 (2015).
    [Crossref]
  24. M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  25. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  26. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
    [Crossref] [PubMed]
  27. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16(21), 16529–16537 (2008).
    [Crossref] [PubMed]
  28. M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
    [Crossref] [PubMed]
  29. J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
    [Crossref] [PubMed]
  30. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref] [PubMed]
  31. E. D. Palik, Handbook of optical constants of solids (Academic, 1985).
  32. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
    [Crossref]
  33. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
    [Crossref]
  34. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  35. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 1983).
  36. J. Willems, J. Haes, and R. Baets, “The bidirectional mode expansion method for two-dimensional waveguides: the TM case,” Opt. Quantum Electron. 27(10), 995–1007 (1995).
    [Crossref]
  37. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  38. S. Zhang, Y. Wang, S. Wang, and W. Zheng, “Wavelength-tunable perfect absorber based on guided-mode resonances,” Appl. Opt. 55(12), 3176–3181 (2016).
    [Crossref] [PubMed]
  39. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
    [Crossref] [PubMed]
  40. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [Crossref] [PubMed]
  41. L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
    [Crossref] [PubMed]
  42. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]

2017 (1)

J. L. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

2016 (5)

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

M. M. Hossain and M. Gu, “Radiative cooling: Principles, progress, and potentials,” Adv Sci (Weinh) 3(7), 1500360 (2016).
[Crossref] [PubMed]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

S. Zhang, Y. Wang, S. Wang, and W. Zheng, “Wavelength-tunable perfect absorber based on guided-mode resonances,” Appl. Opt. 55(12), 3176–3181 (2016).
[Crossref] [PubMed]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

2015 (5)

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the Mid‐Summer sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

Y. K. Zhong, S. M. Fu, S. L. Yan, P. Y. Chen, and A. Lin, “Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

2014 (2)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (4)

2011 (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2008 (3)

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16(21), 16529–16537 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

2006 (3)

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative Refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1995 (1)

J. Willems, J. Haes, and R. Baets, “The bidirectional mode expansion method for two-dimensional waveguides: the TM case,” Opt. Quantum Electron. 27(10), 995–1007 (1995).
[Crossref]

1993 (1)

B. Orel, M. K. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

1985 (1)

1981 (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Albrektsen, O.

Alekseyev, L. V.

Alexander, R. W.

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Baets, R.

J. Willems, J. Haes, and R. Baets, “The bidirectional mode expansion method for two-dimensional waveguides: the TM case,” Opt. Quantum Electron. 27(10), 995–1007 (1995).
[Crossref]

Baldassarre, L.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Barnard, E. S.

Bell, R. J.

Biagioni, P.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Bouchon, P.

Bozhevolnyi, S. I.

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16(21), 16529–16537 (2008).
[Crossref] [PubMed]

Cai, H.

Calandrini, E.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Chandran, A.

Chee, J.

Chen, H. T.

Chen, L.

Chen, P. Y.

Y. K. Zhong, S. M. Fu, S. L. Yan, P. Y. Chen, and A. Lin, “Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

Chen, Z.

J. L. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

Christ, A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Dai, Y.

Ding, H.

Ding, W.

Fan, S.

J. L. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Feng, R.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Frigerio, J.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Fu, S. M.

Y. K. Zhong, S. M. Fu, S. L. Yan, P. Y. Chen, and A. Lin, “Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gallacher, K.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the Mid‐Summer sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Gippius, N. A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Granqvist, C. G.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Gu, M.

M. M. Hossain and M. Gu, “Radiative cooling: Principles, progress, and potentials,” Adv Sci (Weinh) 3(7), 1500360 (2016).
[Crossref] [PubMed]

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Gunde, M. K.

B. Orel, M. K. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

Guo, W.

Haes, J.

J. Willems, J. Haes, and R. Baets, “The bidirectional mode expansion method for two-dimensional waveguides: the TM case,” Opt. Quantum Electron. 27(10), 995–1007 (1995).
[Crossref]

Haïdar, R.

Han, T.

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Hjortsberg, A.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

Holsteen, A.

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Hossain, M. M.

M. M. Hossain and M. Gu, “Radiative cooling: Principles, progress, and potentials,” Adv Sci (Weinh) 3(7), 1500360 (2016).
[Crossref] [PubMed]

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Isella, G.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Jacob, Z.

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Jurado, Z.

J. L. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kildishev, A. V.

N. Xingjie, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

Koechlin, C.

Kou, J. L.

J. L. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Krainer, A.

B. Orel, M. K. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

Kuhl, J.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lin, A.

Y. K. Zhong, S. M. Fu, S. L. Yan, P. Y. Chen, and A. Lin, “Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

Liu, L.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Y.

Lo, G. Q.

Long, L. L.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Minnich, A. J.

J. L. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Miyata, M.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nagasaki, Y.

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Narimanov, E.

Nielsen, M. G.

Ordal, M. A.

Orel, B.

B. Orel, M. K. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

Ortolani, M.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, N.

Pardo, F.

Paul, D. J.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Pelouard, J. L.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative Refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Pors, A.

Qiu, J.

Querry, M. R.

Raman, A.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Ren, W.

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sakat, E.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Samarelli, A.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

N. Xingjie, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Smith, G. B.

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the Mid‐Summer sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Wang, S.

Wang, X.

Wang, Y.

S. Zhang, Y. Wang, S. Wang, and W. Zheng, “Wavelength-tunable perfect absorber based on guided-mode resonances,” Appl. Opt. 55(12), 3176–3181 (2016).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

White, J. S.

Willems, J.

J. Willems, J. Haes, and R. Baets, “The bidirectional mode expansion method for two-dimensional waveguides: the TM case,” Opt. Quantum Electron. 27(10), 995–1007 (1995).
[Crossref]

Xingjie, N.

N. Xingjie, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Yan, S. L.

Y. K. Zhong, S. M. Fu, S. L. Yan, P. Y. Chen, and A. Lin, “Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

Zentgraf, T.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

Zhang, S.

S. Zhang, Y. Wang, S. Wang, and W. Zheng, “Wavelength-tunable perfect absorber based on guided-mode resonances,” Appl. Opt. 55(12), 3176–3181 (2016).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zheng, W.

Zhong, Y. K.

Y. K. Zhong, S. M. Fu, S. L. Yan, P. Y. Chen, and A. Lin, “Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

Zhu, L.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Zhu, S.

ACS Photonics (1)

J. L. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Adv Sci (Weinh) (2)

M. M. Hossain and M. Gu, “Radiative cooling: Principles, progress, and potentials,” Adv Sci (Weinh) 3(7), 1500360 (2016).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the Mid‐Summer sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (1)

Y. K. Zhong, S. M. Fu, S. L. Yan, P. Y. Chen, and A. Lin, “Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells,” IEEE Photonics J. 7(4), 1–12 (2015).
[Crossref]

J. Appl. Phys. (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Nano Lett. (6)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolani, and P. Biagioni, “Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Nat. Commun. (3)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

N. Xingjie, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nature (2)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Opt. Express (9)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16(21), 16529–16537 (2008).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
[Crossref] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. L. Pelouard, and R. Haïdar, “Analytical description of subwavelength plasmonic MIM resonators and of their combination,” Opt. Express 21(6), 7025–7032 (2013).
[Crossref] [PubMed]

W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
[Crossref] [PubMed]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

J. Willems, J. Haes, and R. Baets, “The bidirectional mode expansion method for two-dimensional waveguides: the TM case,” Opt. Quantum Electron. 27(10), 995–1007 (1995).
[Crossref]

Phys. Rev. B (2)

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

Phys. Rev. Lett. (5)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

J. B. Pendry, “Negative Refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Sol. Energy (1)

B. Orel, M. K. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

Other (3)

E. D. Palik, Handbook of optical constants of solids (Academic, 1985).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic geometry of an individual MDM resonator. Top and side illuminations are depicted in the figure. (b) The frequency dependence of |r| and ϕ. Spectra of |Eend| under side (c) and top (d) illuminations. Results of FDTD (red lines) and F–P model (Eq. (2) and (3), blue lines) are compared. All calculation results are normalized.

Fig. 2
Fig. 2

(a) Schematic geometry of an individual EMDM resonator. (b) The frequency dependence of |r| and ϕ. Spectra of |Eend| under side (c) and top (d) illumination. The results of FDTD (red lines) and F–P model (Eq. (2) and (3), blue lines) are compared. All results are normalized.

Fig. 3
Fig. 3

(a) The coupling from free space wave in MDM and EMDM structures (not resonator). (b) The absorption cross-sections (ACS) in the individual MDM and EMDM resonator, respectively.

Fig. 4
Fig. 4

(a) Schematic geometry of a single terminated end of the EMDM structure (indicated by green dashed line), where region I and II correspond to MDM cavity and DLMW, respectively. (b) Spectra of neff of the first order DLMW mode (td = 0.65 μm, nd = 4).

Fig. 5
Fig. 5

The transmittance spectra at the terminated end (td = 0.65 μm, nd = 4). Ttotal denotes the total net transmitted power at the terminated end (black line), and TDLMW, 1 denotes the net transmitted power of the first order DLMW mode (red line).

Fig. 6
Fig. 6

(a) The schematic geometry of single-sized periodic EMDM resonators. (b) Absorption spectra of periodic MDM (red line) and EMDM (blue line) resonators with wMDM = 1.25 μm, wEMDM = 0.8 μm, and PMDM = PEMDM = 3 μm.

Fig. 7
Fig. 7

(a) Electric field distribution |Ex| for periodic EMDM structures (PEMDM = 3 μm) at λ0 = 12.29 μm, 9.46 μm, and 6.54 μm. (b) Magnetic field distribution |Hy| for periodic EMDM structures at λ0 = 12.29 μm, 9.46 μm, and 6.54 μm. The EM field within two unit cells is shown for the purpose of clarity along the z axis.

Fig. 8
Fig. 8

(a). Absorption map with respect to wEMDM for PEMDM = 3 μm. Black dashed lines indicate the prediction of peak positions of P1 and P2. Rabi splitting Ω R of 30.2 meV at wEMDM = 0.65 μm is shown. (b) Absorption map with respect to PEMDM for wEMDM = 0.8 μm.

Fig. 9
Fig. 9

Incident angle resolved absorption map at wEMDM = 0.8 μm, PEMDM = 3 μm. Black dashed lines label the prediction of peak position by F-P model (P1) and Eq. (13) (P2 + , P2-, and P3-).

Fig. 10
Fig. 10

(a) Schematic geometry of 3D periodic cubic EMDM resonators under top illumination (z-polarized). (b) Absorption spectrum of a 3D periodic cube EMDM structure. The orders of hybrid modes are labeled.

Fig. 11
Fig. 11

Incident angle resolved absorption map of 3D EMDM resonators at wEMDM = 0.9 μm, PEMDM = 3 μm. White lines label the peak positions of P1, P2 + , and P2-.

Fig. 12
Fig. 12

(a) Absorption spectrum of lossy dielectric-based periodic EMDM resonators. (b) Incident angle resolved absorption map of above structures, white lines label the peak positions of P1 and P2 + .

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

2π λ 0 n eff w+ϕ=kw+ϕ=mπ,
| E end || (1| r | e iϕ e ikw )(1 e ikw ) 1 | r | 2 e i2ϕ e i2kw |( Top illumination ).
| E end || (1+| r | e iϕ ) e ikw 1 | r | 2 e i2ϕ e i2kw |( Side illumination ).
σ= P I ,
P= 1 2 A ωIm[ε(x,z)] | E | 2 dxdz ,
e 2 k d t d = k d / ε d + k f / ε f k d / ε d k f / ε f k d / ε d + k m / ε m k d / ε d k m / ε m ,
k d,f,m 2 = β 2 k 0 2 ε d,f,m ,
E end = n a n E n f + b n E n b .
H end = n a n H n f + b n H n b ,
T n = T f,n T b,n a n 2 b n 2 ,
T total = n T DLMW,n + T free space ,
2π λ 0 [ n EMDM w EMDM + n DLMW ( P EMDM w EMDM )]=2mπ,
2π λ 0 [ n EMDM w EMDM + n DLMW ( P EMDM w EMDM )]= ( 2π P EMDM λ 0 Sinθ+2mπ) 2 + (2nπ) 2 ,

Metrics