Abstract

In the scandium-hyperdoped silicon, scandiums tend to form interstitial dimers due to their lowest formation energies. The interstitial dimers of Sc formed in silicon can introduce several intermediate-bands (IBs) in the band gap, which can lead to strong sub-band gap absorption. When the two interstitial Sc atoms get close to each other, the infrared response decreases and shifts to short wavelengths. The absorption wavelength range of the interstitial dimers covers the main solar spectrum and the two primary telecommunications wavelengths, which would make material become a high efficiency IB solar cell and promising silicon-based infrared photodetector.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of scandium on the optical properties of crystalline silicon material

Xiao Dong, Yongyong Wang, Xueping Li, and Yingying Li
Opt. Express 24(18) A1269-A1275 (2016)

Raman spectra and optical properties of the chalcogen-hyperdoped silicon: a first-principles study

Xiao Dong, Xiuxiu Fang, Yongyong Wang, and Xiaohui Song
Opt. Express 26(18) A796-A805 (2018)

Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon

Xiaodong Qiu, Zijing Wang, Xiaotong Hou, Xuegong Yu, and Deren Yang
Photon. Res. 7(3) 351-358 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Vörös, G. Galli, and G. T. Zimanyi, “Colloidal nanoparticles for intermediate band solar cells,” ACS Nano 9(7), 6882–6890 (2015).
    [Crossref] [PubMed]
  2. N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
    [Crossref] [PubMed]
  3. K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
    [Crossref]
  4. P. Palacios, I. Aguilera, P. Wahnón, and J. C. Conesa, “Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials,” J. Phys. Chem. C 112(25), 9525–9529 (2008).
    [Crossref]
  5. G. Wei and S. R. Forrest, “Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier,” Nano Lett. 7(1), 218–222 (2007).
    [Crossref] [PubMed]
  6. K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
    [Crossref]
  7. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [Crossref]
  8. A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
    [Crossref]
  9. K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
    [Crossref] [PubMed]
  10. E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
    [Crossref]
  11. W. Wang, A. S. Lin, and J. D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O,” Appl. Phys. Lett. 95(1), 011103 (2009).
    [Crossref]
  12. W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
    [Crossref]
  13. E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
    [Crossref] [PubMed]
  14. M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1–3), 289–294 (2007).
    [Crossref]
  15. H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
    [Crossref]
  16. H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
    [Crossref]
  17. M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
    [Crossref] [PubMed]
  18. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79(7), 1635–1641 (2004).
    [Crossref]
  19. M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010).
    [Crossref]
  20. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
    [Crossref]
  21. X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
    [Crossref]
  22. X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
    [Crossref]
  23. Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
    [Crossref]
  24. Y. Zhou, F. Liu, and X. Song, “The insulator-to-metal transition of Co hyperdoped crystalline silicon,” J. Appl. Phys. 113(10), 103702 (2013).
    [Crossref]
  25. L. Scheffler, V. Kolkovsky, and J. Weber, “Isolated substitutional cobalt and Co-related complexes in silicon,” J. Appl. Phys. 113(18), 183714 (2013).
    [Crossref]
  26. X. Dong, Y. Wang, X. Li, and Y. Li, “Effect of scandium on the optical properties of crystalline silicon material,” Opt. Express 24(18), A1269–A1275 (2016).
    [Crossref] [PubMed]
  27. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]
  28. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
    [Crossref]
  29. B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
    [Crossref]
  30. T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88(24), 241902 (2006).
    [Crossref]
  31. B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
    [Crossref]
  32. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
    [Crossref] [PubMed]
  33. J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
    [Crossref]
  34. J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Erratum: Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 124(21), 219906 (2006).
    [Crossref]

2016 (1)

2015 (2)

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

M. Vörös, G. Galli, and G. T. Zimanyi, “Colloidal nanoparticles for intermediate band solar cells,” ACS Nano 9(7), 6882–6890 (2015).
[Crossref] [PubMed]

2014 (1)

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

2013 (4)

Y. Zhou, F. Liu, and X. Song, “The insulator-to-metal transition of Co hyperdoped crystalline silicon,” J. Appl. Phys. 113(10), 103702 (2013).
[Crossref]

L. Scheffler, V. Kolkovsky, and J. Weber, “Isolated substitutional cobalt and Co-related complexes in silicon,” J. Appl. Phys. 113(18), 183714 (2013).
[Crossref]

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

2012 (3)

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

2011 (2)

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

2010 (2)

M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010).
[Crossref]

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

2009 (3)

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

W. Wang, A. S. Lin, and J. D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O,” Appl. Phys. Lett. 95(1), 011103 (2009).
[Crossref]

2008 (2)

P. Palacios, I. Aguilera, P. Wahnón, and J. C. Conesa, “Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials,” J. Phys. Chem. C 112(25), 9525–9529 (2008).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

2007 (2)

G. Wei and S. R. Forrest, “Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier,” Nano Lett. 7(1), 218–222 (2007).
[Crossref] [PubMed]

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1–3), 289–294 (2007).
[Crossref]

2006 (2)

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88(24), 241902 (2006).
[Crossref]

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Erratum: Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 124(21), 219906 (2006).
[Crossref]

2005 (1)

2004 (2)

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79(7), 1635–1641 (2004).
[Crossref]

2003 (2)

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

2002 (1)

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

1999 (1)

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

1997 (2)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

1996 (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Ager, J. W.

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Aguilera, I.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

P. Palacios, I. Aguilera, P. Wahnón, and J. C. Conesa, “Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials,” J. Phys. Chem. C 112(25), 9525–9529 (2008).
[Crossref]

Antolín, E.

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

Aziz, M. J.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010).
[Crossref]

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88(24), 241902 (2006).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Becla, P.

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

Beeman, J. W.

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

Buonassisi, T.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Campman, K.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Carey, J. E.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79(7), 1635–1641 (2004).
[Crossref]

Clarke, S. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Cohen, M. L.

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

Conesa, J. C.

P. Palacios, I. Aguilera, P. Wahnón, and J. C. Conesa, “Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials,” J. Phys. Chem. C 112(25), 9525–9529 (2008).
[Crossref]

Côté, M.

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

Crouch, C. H.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79(7), 1635–1641 (2004).
[Crossref]

Dong, X.

X. Dong, Y. Wang, X. Li, and Y. Li, “Effect of scandium on the optical properties of crystalline silicon material,” Opt. Express 24(18), A1269–A1275 (2016).
[Crossref] [PubMed]

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

Dubon, O. D.

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

Ernzerhof, M.

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Erratum: Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 124(21), 219906 (2006).
[Crossref]

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Ertekin, E.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Fakra, S. C.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

Feng, G.

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Forrest, S. R.

G. Wei and S. R. Forrest, “Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier,” Nano Lett. 7(1), 218–222 (2007).
[Crossref] [PubMed]

Friedman, D. J.

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Friend, C. M.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1–3), 289–294 (2007).
[Crossref]

Galli, G.

M. Vörös, G. Galli, and G. T. Zimanyi, “Colloidal nanoparticles for intermediate band solar cells,” ACS Nano 9(7), 6882–6890 (2015).
[Crossref] [PubMed]

Geisz, J. F.

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Génin, F. Y.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79(7), 1635–1641 (2004).
[Crossref]

González-Díaz, G.

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

Grossman, J. C.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Haller, E. E.

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Hasnip, P. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Heyb, J.

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Erratum: Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 124(21), 219906 (2006).
[Crossref]

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

Kim, T.

M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010).
[Crossref]

Kim, T. G.

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88(24), 241902 (2006).
[Crossref]

Kolkovsky, V.

L. Scheffler, V. Kolkovsky, and J. Weber, “Isolated substitutional cobalt and Co-related complexes in silicon,” J. Appl. Phys. 113(18), 183714 (2013).
[Crossref]

Kurtz, S. R.

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Li, N.

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

Li, X.

Li, Y.

X. Dong, Y. Wang, X. Li, and Y. Li, “Effect of scandium on the optical properties of crystalline silicon material,” Opt. Express 24(18), A1269–A1275 (2016).
[Crossref] [PubMed]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Liang, C.

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

Lin, A. S.

W. Wang, A. S. Lin, and J. D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O,” Appl. Phys. Lett. 95(1), 011103 (2009).
[Crossref]

Lindan, P. J. D.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Liu, F.

Y. Zhou, F. Liu, and X. Song, “The insulator-to-metal transition of Co hyperdoped crystalline silicon,” J. Appl. Phys. 113(10), 103702 (2013).
[Crossref]

Liu, S.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Liu, Y.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

López, N.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Louie, S. G.

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

Luque, A.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Marcus, M. A.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

Martí, A.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Mártil, I.

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

Mazur, E.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1–3), 289–294 (2007).
[Crossref]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79(7), 1635–1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Newman, B. K.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

Ning, B.

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Ning, X.

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Olea, J.

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

Olson, J. M.

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Palacios, P.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

P. Palacios, I. Aguilera, P. Wahnón, and J. C. Conesa, “Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials,” J. Phys. Chem. C 112(25), 9525–9529 (2008).
[Crossref]

Pastor, D.

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

Payne, M. C.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Pfrommer, B. G.

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

Phillips, J. D.

W. Wang, A. S. Lin, and J. D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O,” Appl. Phys. Lett. 95(1), 011103 (2009).
[Crossref]

Pickard, C. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Probert, M. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Recht, D.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

Reichertz, L. A.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Rong, X.

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

Said, A. J.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

Sánchez, K.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

Scarpulla, M. A.

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

Scheffler, L.

L. Scheffler, V. Kolkovsky, and J. Weber, “Isolated substitutional cobalt and Co-related complexes in silicon,” J. Appl. Phys. 113(18), 183714 (2013).
[Crossref]

Scuserial, G. E.

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Erratum: Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 124(21), 219906 (2006).
[Crossref]

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

Segall, M. D.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Shan, W.

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Shao, H.

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Sheehy, M. A.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1–3), 289–294 (2007).
[Crossref]

Shen, M.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79(7), 1635–1641 (2004).
[Crossref]

Sher, M.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

Sher, M. J.

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

Shin, B.

M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010).
[Crossref]

Song, X.

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

Y. Zhou, F. Liu, and X. Song, “The insulator-to-metal transition of Co hyperdoped crystalline silicon,” J. Appl. Phys. 113(10), 103702 (2013).
[Crossref]

Stanley, C.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Sullivan, J. T.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

Sun, H.

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

Tabbal, M.

M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010).
[Crossref]

Tull, B. R.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1–3), 289–294 (2007).
[Crossref]

Vörös, M.

M. Vörös, G. Galli, and G. T. Zimanyi, “Colloidal nanoparticles for intermediate band solar cells,” ACS Nano 9(7), 6882–6890 (2015).
[Crossref] [PubMed]

Wahnón, P.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

P. Palacios, I. Aguilera, P. Wahnón, and J. C. Conesa, “Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials,” J. Phys. Chem. C 112(25), 9525–9529 (2008).
[Crossref]

Walukiewicz, W.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

Wang, J.

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

Wang, W.

W. Wang, A. S. Lin, and J. D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O,” Appl. Phys. Lett. 95(1), 011103 (2009).
[Crossref]

Wang, Y.

X. Dong, Y. Wang, X. Li, and Y. Li, “Effect of scandium on the optical properties of crystalline silicon material,” Opt. Express 24(18), A1269–A1275 (2016).
[Crossref] [PubMed]

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Warrender, J. M.

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88(24), 241902 (2006).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Weber, J.

L. Scheffler, V. Kolkovsky, and J. Weber, “Isolated substitutional cobalt and Co-related complexes in silicon,” J. Appl. Phys. 113(18), 183714 (2013).
[Crossref]

Wei, G.

G. Wei and S. R. Forrest, “Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier,” Nano Lett. 7(1), 218–222 (2007).
[Crossref] [PubMed]

Winkler, M. T.

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

Woolf, D. N.

M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010).
[Crossref]

Wu, J.

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

Yu, K. M.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

Zhang, J.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Zhang, W.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Zhao, L.

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Zhou, Y.

Y. Zhou, F. Liu, and X. Song, “The insulator-to-metal transition of Co hyperdoped crystalline silicon,” J. Appl. Phys. 113(10), 103702 (2013).
[Crossref]

Zhu, J.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Zhu, Z.

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

Zhuang, J.

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Zimanyi, G. T.

M. Vörös, G. Galli, and G. T. Zimanyi, “Colloidal nanoparticles for intermediate band solar cells,” ACS Nano 9(7), 6882–6890 (2015).
[Crossref] [PubMed]

ACS Nano (1)

M. Vörös, G. Galli, and G. T. Zimanyi, “Colloidal nanoparticles for intermediate band solar cells,” ACS Nano 9(7), 6882–6890 (2015).
[Crossref] [PubMed]

Appl. Phys. Express (2)

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

Appl. Phys. Lett. (5)

X. Dong, N. Li, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88(24), 241902 (2006).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material,” Appl. Phys. Lett. 94(4), 042115 (2009).
[Crossref]

W. Wang, A. S. Lin, and J. D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O,” Appl. Phys. Lett. 95(1), 011103 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79(7), 1635–1641 (2004).
[Crossref]

M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010).
[Crossref]

Europhys. Lett. (1)

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

J. Appl. Phys. (3)

Y. Zhou, F. Liu, and X. Song, “The insulator-to-metal transition of Co hyperdoped crystalline silicon,” J. Appl. Phys. 113(10), 103702 (2013).
[Crossref]

L. Scheffler, V. Kolkovsky, and J. Weber, “Isolated substitutional cobalt and Co-related complexes in silicon,” J. Appl. Phys. 113(18), 183714 (2013).
[Crossref]

B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, “Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon,” J. Appl. Phys. 114(13), 133507 (2013).
[Crossref]

J. Chem. Phys. (2)

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215 (2003).
[Crossref]

J. Heyb, G. E. Scuserial, and M. Ernzerhof, “Erratum: Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 124(21), 219906 (2006).
[Crossref]

J. Comput. Phys. (1)

B. G. Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen, “Relaxation of crystals with the quasi-Newton method,” J. Comput. Phys. 131(1), 233–240 (1997).
[Crossref]

J. Phys. Chem. C (1)

P. Palacios, I. Aguilera, P. Wahnón, and J. C. Conesa, “Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials,” J. Phys. Chem. C 112(25), 9525–9529 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Laser Phys. (1)

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Mater. Sci. Eng. B (1)

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1–3), 289–294 (2007).
[Crossref]

Nano Lett. (1)

G. Wei and S. R. Forrest, “Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier,” Nano Lett. 7(1), 218–222 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Formation of a reliable intermediate band in Si heavily coimplanted with chalcogen (S, Se, Te) and group III element (B, Al),” Phys. Rev. B 82(16), 165201 (2010).
[Crossref]

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

Phys. Rev. Lett. (7)

M. T. Winkler, D. Recht, M. J. Sher, A. J. Said, E. Mazur, and M. J. Aziz, “Insulator-to-metal transition in sulfur-doped silicon,” Phys. Rev. Lett. 106(17), 178701 (2011).
[Crossref] [PubMed]

W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).
[Crossref]

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted II-VI oxide semiconductors with multiple band gaps,” Phys. Rev. Lett. 91(24), 246403 (2003).
[Crossref] [PubMed]

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fifteen typical configurations of Sc-dimer doped silicon after geometry optimization: (a) ScS-S; (b) ScS-BI; (c) ScS-SI; (d) ScS-HI; (e) ScS-TI; (f) ScBI-BI; (g) ScSI-SI; (h) ScHI-HI; (i) ScTI-TI; (j) ScBI-SI; (k) ScBI-HI; (l) ScBI-TI; (m) ScSI-HI; (n) ScSI-TI; (o) ScHI-TI. Gray and orange balls represent the Si and Sc atoms, respectively.
Fig. 2
Fig. 2 ScS-HI structures with different atomic distances of Sc after geometry optimization: (a) the nearest Sc-Sc distance configuration; (b) the slightly separate Sc-Sc configuration; (c) the remotest Sc-Sc distance configuration. Gray and orange balls represent the Si and Sc atoms, respectively.
Fig. 3
Fig. 3 Electronic band structures of the five configurations of ScS-HI (a), ScBI-BI (b), ScHI-HI (c), ScHI (d), undoped silicon (e), and the dielectric function (imaginary part) of these configurations (f) in 3 × 3 × 3 supercell.
Fig. 4
Fig. 4 Electronic band structures of the configurations of ScS-HI (a) and ScHI-HI (b) with the remotest Sc-Sc distance, and the dielectric functions (imaginary part) of ScS-HI (c) and ScHI-HI (d) with different Sc-Sc distances.
Fig. 5
Fig. 5 Total and partial density of states (DOS) of the dimer configurations of ScS-HI (left) and ScHI-HI (right) in 3 × 3 × 3 supercell.
Fig. 6
Fig. 6 Electronic band structures of the configurations of ScS-HI in 2 × 2 × 2 supercell calculated by HSE06 (up) and GGA-PBE (down) methods.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E f =E[S c m S i n ]E[S i n ]E[S c m ],
E f =E[S c 2 S i 214 ]- 214 216 E[S i 216 ]-E[S c 2 ]=-0.46 eV.
E f =E[S c 2 S i 215 ]- 215 216 E[S i 216 ]-E[S c 2 ]
E f =E[S c 2 S i 216 ]-E[S i 216 ]-E[S c 2 ]

Metrics