Abstract

Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate estimation of the backscattering coefficient by light scattering at two backward angles

Hiroyuki Tan, Tomohiko Oishi, Akihiko Tanaka, and Roland Doerffer
Appl. Opt. 54(25) 7718-7733 (2015)

A new approach to measure the volume scattering function

Hiroyuki Tan, Roland Doerffer, Tomohiko Oishi, and Akihiko Tanaka
Opt. Express 21(16) 18697-18711 (2013)

Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols

T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami
Opt. Express 24(2) A234-A256 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [Crossref]
  2. H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18(20), 20949–20959 (2010).
    [Crossref] [PubMed]
  3. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995).
    [Crossref]
  4. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14(2), 417–427 (1975).
    [Crossref] [PubMed]
  5. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
    [Crossref]
  6. A. Tanaka, “Numerical model based on successive order of scattering method for computing radiance distribution of underwater light fields,” Opt. Express 18(10), 10127–10136 (2010).
    [Crossref] [PubMed]
  7. N. G. Jerlov, Marine Optics (Elsevier, 1976).
  8. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N.G. Jerlov and E.S. Nielson, eds. (Academic, 1974), pp. 1–24.
  9. H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21(16), 18697–18711 (2013).
    [Crossref] [PubMed]
  10. H. Tan, T. Oishi, A. Tanaka, and R. Doerffer, “Accurate estimation of the backscattering coefficient by light scattering at two backward angles,” Appl. Opt. 54(25), 7718–7733 (2015).
    [Crossref] [PubMed]
  11. E. Aas, “The calibration of a scatterance and fluorescence meter,” Rep. Inst. Geophys. Univ. Oslo, 40, 1979.
  12. T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24(2), A234–A256 (2016).
    [Crossref] [PubMed]
  13. A. Kraberg, M. Baumann, and C. D. Dürselen, COASTAL PHYTOPLANKTON: Photo guide for northern European Seas (Pfeil, 2010).
  14. R. Röttgers and R. Doeffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
    [Crossref]
  15. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University, 1994).
  16. N. Hoepffner and S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol. Prog. Ser. 73, 11–23 (1991).
    [Crossref]
  17. H. Tan, T. Oishi, and R. Doerffer, “Analysis of measured spectral backward scattering coefficient,” presented at Ocean Optics XVII, Fremantle, Australia, October 25–29 2004, paper 006.pdf.
  18. W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. Express 20(10), 11189–11206 (2012).
    [Crossref] [PubMed]
  19. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
    [Crossref]
  20. A. Morel, “Diffusion de la lumière par les eaux de mer; résultats expérimentaux et approche théorique,” in Optics of the Sea: NATO AGARD (1973), paper 61.
  21. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  22. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic, 2007), p.704.

2016 (1)

2015 (1)

2013 (1)

2012 (1)

2010 (2)

2007 (1)

R. Röttgers and R. Doeffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

1997 (1)

1996 (1)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

1995 (1)

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995).
[Crossref]

1991 (1)

N. Hoepffner and S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol. Prog. Ser. 73, 11–23 (1991).
[Crossref]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

1977 (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

1975 (1)

Aas, E.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

Babin, M.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995).
[Crossref]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Bricaud, A.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995).
[Crossref]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14(2), 417–427 (1975).
[Crossref] [PubMed]

Cao, W.

Chami, M.

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Claustre, H.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995).
[Crossref]

Dessailly, D.

Doeffer, R.

R. Röttgers and R. Doeffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

Doerffer, R.

Duforet-Gaurier, L.

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Fry, E. S.

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14(2), 417–427 (1975).
[Crossref] [PubMed]

Harmel, T.

Hieronymi, M.

Hoepffner, N.

N. Hoepffner and S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol. Prog. Ser. 73, 11–23 (1991).
[Crossref]

Hu, S.

Jacobs, M. M.

Loisel, H.

Lubac, B.

Morel, A.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995).
[Crossref]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

A. Morel, “Diffusion de la lumière par les eaux de mer; résultats expérimentaux et approche théorique,” in Optics of the Sea: NATO AGARD (1973), paper 61.

Oishi, T.

Pope, R. M.

Prieur, L.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Röttgers, R.

T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24(2), A234–A256 (2016).
[Crossref] [PubMed]

R. Röttgers and R. Doeffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

Roullier, F.

Sathyendranath, S.

N. Hoepffner and S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol. Prog. Ser. 73, 11–23 (1991).
[Crossref]

Slade, W.

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Sun, Z.

Tan, H.

Tanaka, A.

Vantrepotte, V.

Wang, G.

Xu, Z.

Zhao, J.

Zhou, W.

Appl. Opt. (3)

J. Geophys. Res. (2)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995).
[Crossref]

J. Plankton Res. (1)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

Limnol. Oceanogr. (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Limnol. Oceanogr. Methods (1)

R. Röttgers and R. Doeffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

Mar. Ecol. Prog. Ser. (1)

N. Hoepffner and S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol. Prog. Ser. 73, 11–23 (1991).
[Crossref]

Opt. Express (5)

Other (8)

A. Morel, “Diffusion de la lumière par les eaux de mer; résultats expérimentaux et approche théorique,” in Optics of the Sea: NATO AGARD (1973), paper 61.

M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic, 2007), p.704.

N. G. Jerlov, Marine Optics (Elsevier, 1976).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N.G. Jerlov and E.S. Nielson, eds. (Academic, 1974), pp. 1–24.

A. Kraberg, M. Baumann, and C. D. Dürselen, COASTAL PHYTOPLANKTON: Photo guide for northern European Seas (Pfeil, 2010).

E. Aas, “The calibration of a scatterance and fluorescence meter,” Rep. Inst. Geophys. Univ. Oslo, 40, 1979.

H. Tan, T. Oishi, and R. Doerffer, “Analysis of measured spectral backward scattering coefficient,” presented at Ocean Optics XVII, Fremantle, Australia, October 25–29 2004, paper 006.pdf.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Example of βp*(θ,λ) determination: Relationship between chl-a and βp(30,520) for P.minimum (dot) and Synechococcus spp. (open circle). The slope, i.e. gp(30,520), is obtained via the least squares fit of a linear equation with the determination coefficients, r2 of 0.995 for P.minimum and of 0.969 for Synechococcus spp..
Fig. 2
Fig. 2 gp(30,λ) by phytoplankton used in this study.
Fig. 3
Fig. 3 βp*(θ,520) for cultures used in this study (a) in the absolute value and (b) relative to 30°.
Fig. 4
Fig. 4 Particulate IOPs used for Rrs(λ) calculations; (a) bp(λ) showing with b(λ) model and (b) ap(λ), normalized at 520 nm.
Fig. 5
Fig. 5 Example of Rrs(λ) with different chl-a concentrations, C, for (a) R. baltica and (b) Synechococcus spp., calculated from TRAD assuming mono-phytoplankton seawater.
Fig. 6
Fig. 6 Comparison between Rrs(λ) using measured bp*(λ) as the solid lines and Rrs(λ) using modeled b(λ) as the dashed lines for (a), (b) R. baltica and for (c), (d) Synechococcus spp., assuming C = 0.1 μg/l and C = 30.0 μg/l. The solid line shows Rrs(λ) using measured bp*(λ) The deviation at 440 nm and 660 nm between Rrs(λ) using measured bp*(λ) and Rrs(λ) using b(λ) model are mentioned in the figures.

Tables (1)

Tables Icon

Table 1 Summary of characteristics of phytoplankton used in this study.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

β( θ,λ )= dI( θ,λ ) E( λ )dv .
β p ¯ ( θ,λ )= 1 N N=1 7 β p ( θ,λ ) β p ( 30,λ ) ,
β p * ( θ,λ )= g p ( 30,λ ) β p ¯ ( θ,λ ),
b p * ( λ )=2π 0 π β p * ( θ,λ ) sinθdθ.
β( θ,λ )= β sw ( θ,λ )+C β p * ( θ,λ ),
b( λ )= b sw ( λ )+C b p * ( λ ),
a( λ )= a w ( λ )+C a p * ( λ ),
b( λ )=b( λ 0 ) ( λ 0 λ ) Y ,

Metrics