Abstract

The phenomenon of self-absorption is by far the largest influential factor in the efficiency of luminescent solar concentrators (LSCs), but also the most challenging one to capture computationally. In this work we present a model using a multiple-generation light transport (MGLT) approach to quantify light transport through single-layer luminescent solar concentrators of arbitrary shape and size. We demonstrate that MGLT offers a significant speed increase over Monte Carlo (raytracing) when optimizing the luminophore concentration in large LSCs and more insight into light transport processes. Our results show that optimizing luminophore concentration in a lab-scale device does not yield an optimal optical efficiency after scaling up to realistically sized windows. Each differently sized LSC therefore has to be optimized individually to obtain maximal efficiency. We show that, for strongly self-absorbing LSCs with a high quantum yield, parasitic self-absorption can turn into a positive effect at very high absorption coefficients. This is due to a combination of increased light trapping and stronger absorption of the incoming sunlight. We conclude that, except for scattering losses, MGLT can compute all aspects in light transport through an LSC accurately and can be used as a design tool for building-integrated photovoltaic elements. This design tool is therefore used to calculate many building-integrated LSC power conversion efficiencies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantifying self-absorption losses in luminescent solar concentrators

Otmar M. ten Kate, Koen M. Hooning, and Erik van der Kolk
Appl. Opt. 53(23) 5238-5245 (2014)

Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation

J. S. Batchelder, A. H. Zewai, and T. Cole
Appl. Opt. 18(18) 3090-3110 (1979)

Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators

S. R. Wilton, M. R. Fetterman, J. J. Low, Guanjun You, Zhenyu Jiang, and Jian Xu
Opt. Express 22(S1) A35-A43 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).
  2. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299–2300 (1976).
    [Crossref] [PubMed]
  3. J. S. Batchelder, A. H. Zewai, and T. Cole, “Luminescent solar concentrators 1: theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090–3110 (1979).
    [Crossref] [PubMed]
  4. L. Desmet, A. J. M. Ras, D. K. G. de Boer, and M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Opt. Lett. 37, 3087–3089 (2012).
    [Crossref] [PubMed]
  5. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
    [Crossref]
  6. M. de Jong, W. Kesteloo, and E. van der Kolk, “Deposition of luminescent NaCl:Tm2+ thin films with a Tm concentration gradient using RF magnetron sputtering,” Opt. Mater. 46, 149–153 (2015).
    [Crossref]
  7. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators 2: experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981).
    [Crossref] [PubMed]
  8. A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energ. Mater. Sol. Cells 75, 363–371 (2003).
    [Crossref]
  9. L. Fang, T. S. Parel, L. Danos, and T. Markvart, “Photon reabsorption in fluorescent solar collectors,” J. Appl. Phys. 111, 076104 (2012).
    [Crossref]
  10. I. Papakonstantinou and C. Tummeltshammer, “Fundamental limits of concentration in luminescent solar concentrators revised: the effect of reabsorption and nonunity quantum yield,” Optica 2, 841 (2015).
    [Crossref]
  11. A. Earp, G. Smith, P. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76, 655–667 (2004).
    [Crossref]
  12. A. A. Earp, G. B. Smith, J. Franklin, and P. Swift, “Optimisation of a three-colour luminescent solar concentrator daylighting system,” Sol. Energ. Mater. Sol. Cells 84, 411–426 (2004).
    [Crossref]
  13. J. Sansregret, J. M. Drake, W. R. L. Thomas, and M. L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22, 573–577 (1983).
    [Crossref] [PubMed]
  14. M. Carrascosa, S. Unamuno, and F. Agullo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22, 3236–3241 (1983).
    [Crossref] [PubMed]
  15. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
    [Crossref]
  16. L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49, 1651–1661 (2010).
    [Crossref] [PubMed]
  17. D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110, 033108 (2011).
    [Crossref]
  18. S. R. Wilton, M. R. Fetterman, J. J. Low, G. You, Z. Jiang, and J. Xu, “Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators,” Opt. Express 22, A35 (2014).
    [Crossref] [PubMed]
  19. A. Kerrouche, D. A. Hardy, D. Ross, and B. S. Richards, “Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. Energ. Mater. Sol. Cells 122, 99–106 (2014).
    [Crossref]
  20. V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin, and H. McDaniel, “Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots,” ACS Photonics p. acsphotonics.6b00307 (2016).
    [Crossref]
  21. M. G. Debije and Paul P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).
    [Crossref]
  22. O. M. ten Kate, K. M. Hooning, and E. van der Kolk, “Quantifying self-absorption losses in luminescent solar concentrators,” Appl. Opt. 53, 5238–5245 (2014).
    [Crossref] [PubMed]
  23. Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
    [Crossref]
  24. D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
    [Crossref]
  25. I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
    [Crossref] [PubMed]
  26. Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2, 606–611 (2014).
    [Crossref]
  27. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
    [Crossref]
  28. C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
    [Crossref] [PubMed]
  29. J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
    [Crossref]
  30. Y. Zhao and R. R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3, 1143–1148 (2013).
    [Crossref]
  31. A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17, 1435–1440 (2015).
    [Crossref]
  32. F. M. Vossen, M. P. Aarts, and M. G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy Build. 113, 123–132 (2016).
    [Crossref]
  33. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
    [Crossref]
  34. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt: Res. Appl. 23, 805–812 (2015). PIP-15-110.
    [Crossref]
  35. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015). PIP-14-274.
    [Crossref]
  36. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl. 24, 905–913 (2016).
    [Crossref]
  37. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. Appl. 21, 1–11 (2013).
    [Crossref]
  38. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt: Res. Appl. 22, 701–710 (2014). PIP-14-093.
    [Crossref]
  39. M. Kanellis, M. M. de Jong, L. Slooff, and M. G. Debije, “The solar noise barrier project: 1. effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier,” Renew. Energy 103, 647–652 (2017).
    [Crossref]

2017 (1)

M. Kanellis, M. M. de Jong, L. Slooff, and M. G. Debije, “The solar noise barrier project: 1. effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier,” Renew. Energy 103, 647–652 (2017).
[Crossref]

2016 (2)

F. M. Vossen, M. P. Aarts, and M. G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy Build. 113, 123–132 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl. 24, 905–913 (2016).
[Crossref]

2015 (6)

A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17, 1435–1440 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt: Res. Appl. 23, 805–812 (2015). PIP-15-110.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015). PIP-14-274.
[Crossref]

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

M. de Jong, W. Kesteloo, and E. van der Kolk, “Deposition of luminescent NaCl:Tm2+ thin films with a Tm concentration gradient using RF magnetron sputtering,” Opt. Mater. 46, 149–153 (2015).
[Crossref]

I. Papakonstantinou and C. Tummeltshammer, “Fundamental limits of concentration in luminescent solar concentrators revised: the effect of reabsorption and nonunity quantum yield,” Optica 2, 841 (2015).
[Crossref]

2014 (8)

S. R. Wilton, M. R. Fetterman, J. J. Low, G. You, Z. Jiang, and J. Xu, “Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators,” Opt. Express 22, A35 (2014).
[Crossref] [PubMed]

A. Kerrouche, D. A. Hardy, D. Ross, and B. S. Richards, “Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. Energ. Mater. Sol. Cells 122, 99–106 (2014).
[Crossref]

I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
[Crossref] [PubMed]

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2, 606–611 (2014).
[Crossref]

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
[Crossref] [PubMed]

O. M. ten Kate, K. M. Hooning, and E. van der Kolk, “Quantifying self-absorption losses in luminescent solar concentrators,” Appl. Opt. 53, 5238–5245 (2014).
[Crossref] [PubMed]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt: Res. Appl. 22, 701–710 (2014). PIP-14-093.
[Crossref]

2013 (3)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. Appl. 21, 1–11 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Y. Zhao and R. R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3, 1143–1148 (2013).
[Crossref]

2012 (4)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[Crossref]

M. G. Debije and Paul P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).
[Crossref]

L. Fang, T. S. Parel, L. Danos, and T. Markvart, “Photon reabsorption in fluorescent solar collectors,” J. Appl. Phys. 111, 076104 (2012).
[Crossref]

L. Desmet, A. J. M. Ras, D. K. G. de Boer, and M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Opt. Lett. 37, 3087–3089 (2012).
[Crossref] [PubMed]

2011 (2)

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110, 033108 (2011).
[Crossref]

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

2010 (1)

2009 (1)

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

2007 (1)

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[Crossref]

2004 (2)

A. Earp, G. Smith, P. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76, 655–667 (2004).
[Crossref]

A. A. Earp, G. B. Smith, J. Franklin, and P. Swift, “Optimisation of a three-colour luminescent solar concentrator daylighting system,” Sol. Energ. Mater. Sol. Cells 84, 411–426 (2004).
[Crossref]

2003 (1)

A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energ. Mater. Sol. Cells 75, 363–371 (2003).
[Crossref]

1983 (2)

1981 (1)

1979 (1)

1976 (1)

Aarts, M. P.

F. M. Vossen, M. P. Aarts, and M. G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy Build. 113, 123–132 (2016).
[Crossref]

Agullo-Lopez, F.

Alonso-Álvarez, D.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

Baker, T. A.

V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin, and H. McDaniel, “Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots,” ACS Photonics p. acsphotonics.6b00307 (2016).
[Crossref]

Barnham, K.

A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energ. Mater. Sol. Cells 75, 363–371 (2003).
[Crossref]

Batchelder, J. S.

Bawendi, M. G.

I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
[Crossref] [PubMed]

Beverina, L.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Bomm, J.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Bonomo, P.

F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).

Bösch, A.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

Bose, R.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Bradshaw, L. R.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
[Crossref] [PubMed]

Brovelli, S.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Büchtemann, A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Buckley, A. R.

A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17, 1435–1440 (2015).
[Crossref]

Buxton, B.

A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energ. Mater. Sol. Cells 75, 363–371 (2003).
[Crossref]

Carrascosa, M.

Carter, S. A.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[Crossref]

Chan, N. L. A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Chatten, A.

A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energ. Mater. Sol. Cells 75, 363–371 (2003).
[Crossref]

Chatten, A. J.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Chatzipanagi, A.

F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).

Cole, T.

Colombo, A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Coropceanu, I.

I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
[Crossref] [PubMed]

Danos, L.

L. Fang, T. S. Parel, L. Danos, and T. Markvart, “Photon reabsorption in fluorescent solar collectors,” J. Appl. Phys. 111, 076104 (2012).
[Crossref]

de Boer, D. K. G.

de Brouwer, A. F. P.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

de Jong, M.

M. de Jong, W. Kesteloo, and E. van der Kolk, “Deposition of luminescent NaCl:Tm2+ thin films with a Tm concentration gradient using RF magnetron sputtering,” Opt. Mater. 46, 149–153 (2015).
[Crossref]

de Jong, M. M.

M. Kanellis, M. M. de Jong, L. Slooff, and M. G. Debije, “The solar noise barrier project: 1. effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier,” Renew. Energy 103, 647–652 (2017).
[Crossref]

de Mello Donega, C.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Debije, M. G.

M. Kanellis, M. M. de Jong, L. Slooff, and M. G. Debije, “The solar noise barrier project: 1. effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier,” Renew. Energy 103, 647–652 (2017).
[Crossref]

F. M. Vossen, M. P. Aarts, and M. G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy Build. 113, 123–132 (2016).
[Crossref]

M. G. Debije and Paul P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).
[Crossref]

L. Desmet, A. J. M. Ras, D. K. G. de Boer, and M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Opt. Lett. 37, 3087–3089 (2012).
[Crossref] [PubMed]

Desmet, L.

Dimroth, F.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

Drake, J. M.

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl. 24, 905–913 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015). PIP-14-274.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt: Res. Appl. 23, 805–812 (2015). PIP-15-110.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt: Res. Appl. 22, 701–710 (2014). PIP-14-093.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. Appl. 21, 1–11 (2013).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[Crossref]

Earp, A.

A. Earp, G. Smith, P. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76, 655–667 (2004).
[Crossref]

Earp, A. A.

A. A. Earp, G. B. Smith, J. Franklin, and P. Swift, “Optimisation of a three-colour luminescent solar concentrator daylighting system,” Sol. Energ. Mater. Sol. Cells 84, 411–426 (2004).
[Crossref]

Ekins-Daukes, N.

A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energ. Mater. Sol. Cells 75, 363–371 (2003).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl. 24, 905–913 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt: Res. Appl. 23, 805–812 (2015). PIP-15-110.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015). PIP-14-274.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt: Res. Appl. 22, 701–710 (2014). PIP-14-093.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. Appl. 21, 1–11 (2013).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[Crossref]

Erickson, C. S.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
[Crossref] [PubMed]

Fang, L.

L. Fang, T. S. Parel, L. Danos, and T. Markvart, “Photon reabsorption in fluorescent solar collectors,” J. Appl. Phys. 111, 076104 (2012).
[Crossref]

Farrell, D. J.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Fetterman, M. R.

Folkerts, W.

F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).

Franklin, J.

A. Earp, G. Smith, P. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76, 655–667 (2004).
[Crossref]

A. A. Earp, G. B. Smith, J. Franklin, and P. Swift, “Optimisation of a three-colour luminescent solar concentrator daylighting system,” Sol. Energ. Mater. Sol. Cells 84, 411–426 (2004).
[Crossref]

Frontini, F.

F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).

Gamelin, D. R.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
[Crossref] [PubMed]

Gilbertson, J. D.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
[Crossref] [PubMed]

Glunz, S. W.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

Green, A. P.

A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17, 1435–1440 (2015).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl. 24, 905–913 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015). PIP-14-274.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt: Res. Appl. 23, 805–812 (2015). PIP-15-110.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt: Res. Appl. 22, 701–710 (2014). PIP-14-093.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. Appl. 21, 1–11 (2013).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[Crossref]

Groeneveld, E.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Hardy, D. A.

A. Kerrouche, D. A. Hardy, D. Ross, and B. S. Richards, “Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. Energ. Mater. Sol. Cells 122, 99–106 (2014).
[Crossref]

Helmers, H.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl. 24, 905–913 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt: Res. Appl. 23, 805–812 (2015). PIP-15-110.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015). PIP-14-274.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt: Res. Appl. 22, 701–710 (2014). PIP-14-093.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. Appl. 21, 1–11 (2013).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[Crossref]

Hooning, K. M.

Ilan, B.

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110, 033108 (2011).
[Crossref]

Jia, S.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

Jiang, Z.

Jones, A. C.

Kanellis, M.

M. Kanellis, M. M. de Jong, L. Slooff, and M. G. Debije, “The solar noise barrier project: 1. effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier,” Renew. Energy 103, 647–652 (2017).
[Crossref]

Kelley, D. F.

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110, 033108 (2011).
[Crossref]

Kerrouche, A.

A. Kerrouche, D. A. Hardy, D. Ross, and B. S. Richards, “Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. Energ. Mater. Sol. Cells 122, 99–106 (2014).
[Crossref]

Kesteloo, W.

M. de Jong, W. Kesteloo, and E. van der Kolk, “Deposition of luminescent NaCl:Tm2+ thin films with a Tm concentration gradient using RF magnetron sputtering,” Opt. Mater. 46, 149–153 (2015).
[Crossref]

Klampaftis, E.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

Klimov, V. I.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin, and H. McDaniel, “Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots,” ACS Photonics p. acsphotonics.6b00307 (2016).
[Crossref]

Koole, R.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Krumer, Z.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Lambe, J.

Lesiecki, M. L.

Levine, B. G.

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2, 606–611 (2014).
[Crossref]

Lim, J.

V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin, and H. McDaniel, “Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots,” ACS Photonics p. acsphotonics.6b00307 (2016).
[Crossref]

Lorenzon, M.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Low, J. J.

Lunt, R. R.

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2, 606–611 (2014).
[Crossref]

Y. Zhao and R. R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3, 1143–1148 (2013).
[Crossref]

Malik, M.

A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energ. Mater. Sol. Cells 75, 363–371 (2003).
[Crossref]

Markvart, T.

L. Fang, T. S. Parel, L. Danos, and T. Markvart, “Photon reabsorption in fluorescent solar collectors,” J. Appl. Phys. 111, 076104 (2012).
[Crossref]

McDaniel, H.

V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin, and H. McDaniel, “Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots,” ACS Photonics p. acsphotonics.6b00307 (2016).
[Crossref]

McDowall, S.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
[Crossref] [PubMed]

McIntosh, K. R.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

Meek, G. A.

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2, 606–611 (2014).
[Crossref]

Meinardi, F.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Meyer, A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Meyer, T.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Moudam, O.

Olson, J. D.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[Crossref]

Papakonstantinou, I.

Parel, T. S.

L. Fang, T. S. Parel, L. Danos, and T. Markvart, “Photon reabsorption in fluorescent solar collectors,” J. Appl. Phys. 111, 076104 (2012).
[Crossref]

Patrick, D. L.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
[Crossref] [PubMed]

Pera, S. J.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Peters, M.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

Ras, A. J. M.

Richards, B. S.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

A. Kerrouche, D. A. Hardy, D. Ross, and B. S. Richards, “Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. Energ. Mater. Sol. Cells 122, 99–106 (2014).
[Crossref]

L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49, 1651–1661 (2010).
[Crossref] [PubMed]

Robertson, N.

Ross, D.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

A. Kerrouche, D. A. Hardy, D. Ross, and B. S. Richards, “Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. Energ. Mater. Sol. Cells 122, 99–106 (2014).
[Crossref]

Rowan, B. C.

Sahin, D.

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110, 033108 (2011).
[Crossref]

Sansregret, J.

Schropp, R. E. I.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Sholin, V.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[Crossref]

Simonutti, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Sinapis, K.

F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).

Slooff, L.

M. Kanellis, M. M. de Jong, L. Slooff, and M. G. Debije, “The solar noise barrier project: 1. effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier,” Renew. Energy 103, 647–652 (2017).
[Crossref]

Slooff, L. H.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Smith, G.

A. Earp, G. Smith, P. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76, 655–667 (2004).
[Crossref]

Smith, G. B.

A. A. Earp, G. B. Smith, J. Franklin, and P. Swift, “Optimisation of a three-colour luminescent solar concentrator daylighting system,” Sol. Energ. Mater. Sol. Cells 84, 411–426 (2004).
[Crossref]

Stolz, T.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

Storiz, P.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

Swift, P.

A. A. Earp, G. B. Smith, J. Franklin, and P. Swift, “Optimisation of a three-colour luminescent solar concentrator daylighting system,” Sol. Energ. Mater. Sol. Cells 84, 411–426 (2004).
[Crossref]

A. Earp, G. Smith, P. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76, 655–667 (2004).
[Crossref]

ten Kate, O. M.

Thomas, W. R. L.

Tummeltshammer, C.

Unamuno, S.

van den Donker, M.

F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).

van der Kolk, E.

M. de Jong, W. Kesteloo, and E. van der Kolk, “Deposition of luminescent NaCl:Tm2+ thin films with a Tm concentration gradient using RF magnetron sputtering,” Opt. Mater. 46, 149–153 (2015).
[Crossref]

O. M. ten Kate, K. M. Hooning, and E. van der Kolk, “Quantifying self-absorption losses in luminescent solar concentrators,” Appl. Opt. 53, 5238–5245 (2014).
[Crossref] [PubMed]

van Dijk-Moes, R. J. A.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

van Sark, W. G. J. H. M.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Velizhanin, K. A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin, and H. McDaniel, “Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots,” ACS Photonics p. acsphotonics.6b00307 (2016).
[Crossref]

Verberne, G.

F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).

Verbunt, Paul P. C.

M. G. Debije and Paul P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).
[Crossref]

Viswanatha, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Vossen, F. M.

F. M. Vossen, M. P. Aarts, and M. G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy Build. 113, 123–132 (2016).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl. 24, 905–913 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015). PIP-14-274.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt: Res. Appl. 23, 805–812 (2015). PIP-15-110.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt: Res. Appl. 22, 701–710 (2014). PIP-14-093.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. Appl. 21, 1–11 (2013).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[Crossref]

Weber, W. H.

Willeke, G.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

Wilson, L. R.

Wilton, S. R.

Xiao, Y.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

Xu, J.

You, G.

Zewai, A. H.

Zewail, A. H.

Zhao, Y.

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2, 606–611 (2014).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Y. Zhao and R. R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3, 1143–1148 (2013).
[Crossref]

ACS Nano (1)

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8, 3461–3467 (2014).
[Crossref] [PubMed]

Adv. Energy Mater. (2)

M. G. Debije and Paul P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).
[Crossref]

Y. Zhao and R. R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3, 1143–1148 (2013).
[Crossref]

Adv. Opt. Mater. (1)

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2, 606–611 (2014).
[Crossref]

Appl. Opt. (7)

Energy Build. (1)

F. M. Vossen, M. P. Aarts, and M. G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy Build. 113, 123–132 (2016).
[Crossref]

J. Appl. Phys. (3)

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110, 033108 (2011).
[Crossref]

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007).
[Crossref]

L. Fang, T. S. Parel, L. Danos, and T. Markvart, “Photon reabsorption in fluorescent solar collectors,” J. Appl. Phys. 111, 076104 (2012).
[Crossref]

Nano Lett. (1)

I. Coropceanu and M. G. Bawendi, “Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency,” Nano Lett. 14, 4097–4101 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ’Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

M. de Jong, W. Kesteloo, and E. van der Kolk, “Deposition of luminescent NaCl:Tm2+ thin films with a Tm concentration gradient using RF magnetron sputtering,” Opt. Mater. 46, 149–153 (2015).
[Crossref]

Optica (1)

Phys. Chem. Chem. Phys. (1)

A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17, 1435–1440 (2015).
[Crossref]

Prog. Photovolt: Res. Appl. (7)

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt: Res. Appl. 23, 479–497 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt: Res. Appl. 23, 805–812 (2015). PIP-15-110.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015). PIP-14-274.
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl. 24, 905–913 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt: Res. Appl. 21, 1–11 (2013).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovolt: Res. Appl. 22, 701–710 (2014). PIP-14-093.
[Crossref]

Renew. Energy (1)

M. Kanellis, M. M. de Jong, L. Slooff, and M. G. Debije, “The solar noise barrier project: 1. effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier,” Renew. Energy 103, 647–652 (2017).
[Crossref]

Sol. Energ. Mater. Sol. Cells (6)

A. A. Earp, G. B. Smith, J. Franklin, and P. Swift, “Optimisation of a three-colour luminescent solar concentrator daylighting system,” Sol. Energ. Mater. Sol. Cells 84, 411–426 (2004).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energ. Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energ. Mater. Sol. Cells 95, 2087–2094 (2011).
[Crossref]

A. Kerrouche, D. A. Hardy, D. Ross, and B. S. Richards, “Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. Energ. Mater. Sol. Cells 122, 99–106 (2014).
[Crossref]

A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energ. Mater. Sol. Cells 75, 363–371 (2003).
[Crossref]

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energ. Mater. Sol. Cells 93, 176–182 (2009).
[Crossref]

Sol. Energy (1)

A. Earp, G. Smith, P. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Sol. Energy 76, 655–667 (2004).
[Crossref]

Other (2)

V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin, and H. McDaniel, “Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots,” ACS Photonics p. acsphotonics.6b00307 (2016).
[Crossref]

F. Frontini, P. Bonomo, A. Chatzipanagi, G. Verberne, M. van den Donker, K. Sinapis, and W. Folkerts, “BIPV product overview for solar facades and roofs,” Tech. Rep. (2015).

Supplementary Material (2)

NameDescription
» Data File 1: CSV (1 KB)      Spectroscopic properties as reported by their respective papers. As well as calculated optical efficiencies using both MGLT and MC.
» Data File 2: CSV (2 KB)      LSC power efficiencies and concentration factors for each selected solar cell for a 100x100x0.5 cm3 theoretical non-quenching LSC.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic cross-section of the working of a single-layer LSC. Orange spheres represent the luminescent centers within a transparent medium. PV cells (gray) surround the perimeter of the concentrator plate. ‘desired’ shows the desired concentrating process without any losses. All other arrows show possible loss mechanisms within an LSC and their associated efficiency: non-unity incoupling due to reflection losses (ηinc), non-unity quantum yield due to non-radiative decay (ηqy), non-unity trapping due to escape-cone losses (ηtrap) and losses due to self-absorption (ηsa). Losses due to scattering within the LSC are not considered in this work and therefore not depicted.

Fig. 2
Fig. 2

The two rays drawn are both emitted at an angle θ from different depths within the LSC. Both rays have to travel the same distance s/ sin(θ) to reach a column at a distance s, viewed from the top of the LSC. The radiant power I(s) of the light from both rays is therefore equal at s, independent of the depth the light was emitted from.

Fig. 3
Fig. 3

Schematic representation of the MC simulation.

Fig. 4
Fig. 4

(a) Comparison between MC and MGLT spectra for the simulated LumoO geometry received at the edges of the LSC. Absorption and emission spectra [23] are shown as well, signifying the large amount of redshift. (b) Optical efficiency per generation for the MGLT model. All materials simulated have absorption coefficients as reported in their respective papers (see Data File 1). Materials with significant spectral overlap have many more generations contributing to the total η due multiple absorption and remission events. (c) Calculation time needed in order to optimize the absorption coefficient for a 10 × 10 × 0.5 cm3 Red305 LSC with different quantum yields. Each datapoint has α ranging from 1 × 10−1 cm−1 to 1 × 108 cm−1. (d) Contribution to the optical efficiency per unit area of the LSC geometry, calculated by MGLT and (e) by MC.

Fig. 5
Fig. 5

Optimization track for GQD (ηqy = 0.45) using two different LSC sizes. The displayed efficiency is the total optical efficiency, calculated through MC. Dotted lines indicate the maxima for the two simulated geometries.

Fig. 6
Fig. 6

(a) Optical efficiency η (dashed) and effective trapping efficiency ηtrap eff (dotted) in Red305 for increasing quantum yields. The white area indicates the region with low optical density, and the shaded area indicates high optical density. (b) Onset of the increase in η for ηqy = 1 Red305 LSCs of varying sizes and thicknesses. This onset is defined as the point where η starts rising again. Lines are drawn as a guide to the eye.

Fig. 7
Fig. 7

Optimization track of a 10 × 10 × 0.5 cm3 Red305 LSC with ηqy = 1. A second maximum is seen in the optical efficiency. Here the second MGLT generation contributes more to the edge-transmission than the first generation.

Tables (3)

Tables Icon

Table 1 Calculated efficiencies for a 10 × 10 × 0.5 cm3 LumoO LSC using absorption coefficients as reported by Krumer et al. [23].

Tables Icon

Table 2 Maximal possible efficiencies for two different LSC sizes for selected materials. α max is the maximal absorption coefficient of the reported spectrum. When α max is denoted as, the highest possible luminophore concentration should be taken (in these calculations limited at 105 cm−1), for ηlhe has become the dominant factor in determining η for that material.

Tables Icon

Table 3 Power conversion efficiencies and concentration factors for 100 × 100 × 0.5 cm3 LSC materials with PV cells covering the entire perimeter with αmax = 60 cm−1 (except for Red305, where αmax = 5.5 cm−1 and LumoO with αmax = 7.9 cm−1) and where only 25 % of the visible spectrum is absorbed ( η LHE vis = 25 %). Here λ max out is the LSC’s output spectrum observed at the perimeter and η power GaAs the highest power efficiency using a GaAs solar cell. η power alt is the best alternative (non-GaAs) cell’s power efficiency, with concentration factor Γalt. Perovskite has been abbreviated to Per.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

η ideal = η inc η LHE η QY η trap .
η inc = 1 | n 1 n 2 n 1 + n 2 | 2 ,
η LHE = λ S ( λ ) ( 1 exp ( α ( λ ) t ) ) d λ λ S ( λ ) d λ .
Φ em ( λ ) λ = 1 λ ( λ ) λ ( λ ) d λ .
σ 0 ( λ ) = η QY N absorbed Φ em ( λ ) λ .
I ( s ) = I 0 exp ( α s ) ,
a ( s , λ ) = α ( λ ) exp ( α ( λ ) s ) 2 π s .
α ( λ ) = α ( λ ) π 2 θ c θ c π θ c 1 sin ( θ ) d θ ,
γ i ( x , y , λ ) = ( η trap + η CA ( λ ) ) σ i ( x , y , λ ) * * a ( x , y , λ ) .
η trap = 1 1 n 2 2 .
η CA ( λ ) = 1 t 0 t 0 θ c ( 1 e α ( λ ) z / cos θ ) sin θ d θ d z .
σ i + 1 = η QY Φ em ( λ ) λ λ λ γ i ( x , y , λ ) d λ .
C i ( λ ) = η trap λ A LSC ( σ i 1 η trap + η CA γ i ) d x d y .
η = η inc η LHE η QY η trap η SA = η inc η LHE C Σ N absorbed .
x = ( x y z ) = ( ξ x l ξ y w t ) ,
p = 1 exp ( α ( λ ) d )
d = 1 α ( λ ) log ( 1 ξ d ) .
x = x + ( d sin ϕ sin θ d cos ϕ sin θ Δ z ) ,
R = | d cos θ + z | t .
Δ z = ( | d cos θ + z | mod t ) z ,
Δ z = t ( | d cos θ + z | mod t ) z .
Δ z = d cos θ .
ϕ = 2 π ξ ϕ ,
θ = arccos ( 2 ξ θ 1 ) .
η = η inc N collected N .
η trap eff = 1 N escaped N absorbed N quenched
η QY eff = 1 N quenched N absorbed N escaped .
η power = I sc V oc F F P in .
Γ = G η power η PV ,

Metrics