Abstract

Abstract: The down-shifting (DS) process is a purely optical approach used to improve the short-wavelength response of a solar cell by shifting high-energy photons to the visible range, which can be more efficiently absorbed by the solar cell. In addition to the DS effect, coupling a DS layer to the top surface of a solar cell results in a change in surface reflectance. The two effects are intermixed and therefore, usually reported as a single effect. Here we propose a procedure to decouple the two effects. Analytical equations are derived to decouple the two effects, that consider the experimentally measured quantum efficiency of the solar cell with and without the DS layer, in addition to transfer matrix simulations of the parasitic absorption in the device structure. In this work, an overall degradation of 0.46 mA/cm2 is observed when adding a DS layer composed of silicon nanocrystals embedded in a quartz matrix to a silicon solar cell of 11% baseline efficiency. To fully understand the contribution from each effect, the surface reflectance and DS effects are decoupled and quantified using the described procedure. We observe an enhancement of 0.27 mA/cm2 in short-circuit current density due to the DS effect, while the surface reflectance effect leads to a degradation of 0.73 mA/cm2 in short-circuit current density.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers

Hsin-Chu Chen, Chien-Chung Lin, Hao-Wei Han, Yu-Lin Tsai, Chia-Hua Chang, Hsun-Wen Wang, Min-An Tsai, Hao-Chung Kuo, and Peichen Yu
Opt. Express 19(S5) A1141-A1147 (2011)

Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures

S. Abdellatif, K. Kirah, R. Ghannam, A. S. G. Khalil, and W. Anis
Appl. Opt. 54(17) 5534-5541 (2015)

Flexible-textured polydimethylsiloxane antireflection structure for enhancing omnidirectional photovoltaic performance of Cu(In,Ga)Se2 solar cells

Shou-Yi Kuo, Ming-Yang Hsieh, Hau-Vei Han, Fang-I Lai, Tsung-Yeh Chuang, Peichen Yu, Chien-Chung Lin, and Hao-Chung Kuo
Opt. Express 22(3) 2860-2867 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd, (2010).
  2. H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express 19(S5Suppl 5), A1141–A1147 (2011).
    [Crossref] [PubMed]
  3. A. Le Donne, M. Acciarri, D. Narducci, S. Marchionna, and S. Binetti, “Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency,” Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009).
    [Crossref]
  4. Z. J. Cheng, L. K. Pan, F. F. Su, M. L. Cao, and Z. Sun, “Eu3+ doped silica film as luminescent down-shifting layer for crystalline Si solar cells,” Surf. Rev. Lett. 16(5), 669–673 (2009).
    [Crossref]
  5. H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
    [Crossref] [PubMed]
  6. B. Sadeghimakki, Z. Gao, and S. Sivoththaman, “Proof of down-conversion by CdSe/ZnS quantum dots on silicon solar cells,” in Proceedings of IEEE 40th Photovoltaic Specialist Conference (PVSC, 2014), 2262–2266.
    [Crossref]
  7. D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Sol. Energy Mater. Sol. Cells 103, 11–16 (2012).
    [Crossref]
  8. E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
    [Crossref]
  9. C. Cheng and J. Yang, “Hydrothermal synthesis of Eu3+ -Doped Y(OH)3 nanotubes as downconversion materials for efficiency enhancement of screen-printed monocrystalline silicon solar cells,” IEEE Electron Device Lett. 33(5), 697–699 (2012).
    [Crossref]
  10. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
    [Crossref]
  11. A. M. Gabr, A. Walker, A. Trojnar, T. J. Hall, R. N. Kleiman, and K. Hinzer, “Numerical Modeling of Silicon Nanocrystal Down - Shifting Layers for Enhanced CIGS Solar Cell Performance,” in Proceedings of IEEE 39th Photovoltaic Specialist Conference (PVSC, 2013), pp. 1003–1007.
    [Crossref]
  12. F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
    [Crossref]
  13. D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
    [Crossref]
  14. W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
    [Crossref]
  15. R. Rothemund, “Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers,” Sol. Energy Mater. Sol. Cells 120, 616–621 (2014).
    [Crossref]
  16. Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
    [Crossref]
  17. M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
    [Crossref] [PubMed]
  18. J. Sacks, R. Savidge, and A. Gabr, “Quantum efficiency measurements of down-shifting using silicon nanocrystals for photovoltaic applications,” in Proceedings of IEEE 38th Photovoltaic Specialist Conference (PVSC, 2012), pp. 92–96.
    [Crossref]
  19. J. Sacks, Spectral Engineering via Silicon Nanocrystals Grown by ECR-PECVD for Photovoltaic Applications (McMaster University, 2012).
  20. G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
    [Crossref] [PubMed]
  21. M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
    [Crossref] [PubMed]
  22. D. N. Micha, A. W. Walker, G. Siefer, F. Dimroth, and A. W. Bett, “Influence of a Very Efficient Back Reflectors on the Quantum Efficiency of Solar Cells,” in Proceedings of EU-PVSEC (2016), pp. 20–24.
  23. S. J. Orfanidis, “Electromagnetic Waves and Antennas,” http://www.ece.rutgers.edu/~orfanidi/ewa/ . [Accessed: 08-Jan-2017].
  24. D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
    [Crossref] [PubMed]
  25. A. M. Gabr, Modelling and Characterization of Down-Conversion and Down-Shifting Processes for Photovoltaic Applications (University of Ottawa, 2016).

2015 (1)

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

2014 (2)

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

R. Rothemund, “Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers,” Sol. Energy Mater. Sol. Cells 120, 616–621 (2014).
[Crossref]

2012 (5)

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Sol. Energy Mater. Sol. Cells 103, 11–16 (2012).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

C. Cheng and J. Yang, “Hydrothermal synthesis of Eu3+ -Doped Y(OH)3 nanotubes as downconversion materials for efficiency enhancement of screen-printed monocrystalline silicon solar cells,” IEEE Electron Device Lett. 33(5), 697–699 (2012).
[Crossref]

2011 (4)

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express 19(S5Suppl 5), A1141–A1147 (2011).
[Crossref] [PubMed]

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

2010 (1)

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

2009 (3)

A. Le Donne, M. Acciarri, D. Narducci, S. Marchionna, and S. Binetti, “Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency,” Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009).
[Crossref]

Z. J. Cheng, L. K. Pan, F. F. Su, M. L. Cao, and Z. Sun, “Eu3+ doped silica film as luminescent down-shifting layer for crystalline Si solar cells,” Surf. Rev. Lett. 16(5), 669–673 (2009).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

2008 (1)

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[Crossref] [PubMed]

Acciarri, M.

A. Le Donne, M. Acciarri, D. Narducci, S. Marchionna, and S. Binetti, “Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency,” Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009).
[Crossref]

Alonso-Álvarez, D.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Anopchenko, A.

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Bauer, M.

D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Sol. Energy Mater. Sol. Cells 103, 11–16 (2012).
[Crossref]

Beard, M. C.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[Crossref] [PubMed]

Bellutti, P.

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Bett, A. W.

D. N. Micha, A. W. Walker, G. Siefer, F. Dimroth, and A. W. Bett, “Influence of a Very Efficient Back Reflectors on the Quantum Efficiency of Solar Cells,” in Proceedings of EU-PVSEC (2016), pp. 20–24.

Binetti, S.

A. Le Donne, M. Acciarri, D. Narducci, S. Marchionna, and S. Binetti, “Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency,” Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009).
[Crossref]

Burkhard, G. F.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

Cao, M. L.

Z. J. Cheng, L. K. Pan, F. F. Su, M. L. Cao, and Z. Sun, “Eu3+ doped silica film as luminescent down-shifting layer for crystalline Si solar cells,” Surf. Rev. Lett. 16(5), 669–673 (2009).
[Crossref]

Chang, C.-H.

Chen, C.

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

Chen, H.-C.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express 19(S5Suppl 5), A1141–A1147 (2011).
[Crossref] [PubMed]

Chen, K.-J.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

Cheng, C.

C. Cheng and J. Yang, “Hydrothermal synthesis of Eu3+ -Doped Y(OH)3 nanotubes as downconversion materials for efficiency enhancement of screen-printed monocrystalline silicon solar cells,” IEEE Electron Device Lett. 33(5), 697–699 (2012).
[Crossref]

Cheng, Z. J.

Z. J. Cheng, L. K. Pan, F. F. Su, M. L. Cao, and Z. Sun, “Eu3+ doped silica film as luminescent down-shifting layer for crystalline Si solar cells,” Surf. Rev. Lett. 16(5), 669–673 (2009).
[Crossref]

Choi, S.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[Crossref] [PubMed]

de Boer, W. D. A. M.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Dimroth, F.

D. N. Micha, A. W. Walker, G. Siefer, F. Dimroth, and A. W. Bett, “Influence of a Very Efficient Back Reflectors on the Quantum Efficiency of Solar Cells,” in Proceedings of EU-PVSEC (2016), pp. 20–24.

Ding, W.

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

Dohnalová, K.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Faulkner, D.

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

Ferrario, L.

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Fritsche, J.

D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Sol. Energy Mater. Sol. Cells 103, 11–16 (2012).
[Crossref]

Gabr, A.

J. Sacks, R. Savidge, and A. Gabr, “Quantum efficiency measurements of down-shifting using silicon nanocrystals for photovoltaic applications,” in Proceedings of IEEE 38th Photovoltaic Specialist Conference (PVSC, 2012), pp. 92–96.
[Crossref]

Gabr, A. M.

A. M. Gabr, A. Walker, A. Trojnar, T. J. Hall, R. N. Kleiman, and K. Hinzer, “Numerical Modeling of Silicon Nanocrystal Down - Shifting Layers for Enhanced CIGS Solar Cell Performance,” in Proceedings of IEEE 39th Photovoltaic Specialist Conference (PVSC, 2013), pp. 1003–1007.
[Crossref]

Gao, Z.

B. Sadeghimakki, Z. Gao, and S. Sivoththaman, “Proof of down-conversion by CdSe/ZnS quantum dots on silicon solar cells,” in Proceedings of IEEE 40th Photovoltaic Specialist Conference (PVSC, 2014), 2262–2266.
[Crossref]

Gregorkiewicz, T.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Hall, T. J.

A. M. Gabr, A. Walker, A. Trojnar, T. J. Hall, R. N. Kleiman, and K. Hinzer, “Numerical Modeling of Silicon Nanocrystal Down - Shifting Layers for Enhanced CIGS Solar Cell Performance,” in Proceedings of IEEE 39th Photovoltaic Specialist Conference (PVSC, 2013), pp. 1003–1007.
[Crossref]

Han, H.-V.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

Han, H.-W.

Hanna, M. C.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[Crossref] [PubMed]

Henderson, E. J.

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

Hinzer, K.

A. M. Gabr, A. Walker, A. Trojnar, T. J. Hall, R. N. Kleiman, and K. Hinzer, “Numerical Modeling of Silicon Nanocrystal Down - Shifting Layers for Enhanced CIGS Solar Cell Performance,” in Proceedings of IEEE 39th Photovoltaic Specialist Conference (PVSC, 2013), pp. 1003–1007.
[Crossref]

Hoke, E. T.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

Ingenhoven, P.

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

Jestin, Y.

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Jia, R.

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

Jia, S.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Klampaftis, E.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Sol. Energy Mater. Sol. Cells 103, 11–16 (2012).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Kleiman, R. N.

A. M. Gabr, A. Walker, A. Trojnar, T. J. Hall, R. N. Kleiman, and K. Hinzer, “Numerical Modeling of Silicon Nanocrystal Down - Shifting Layers for Enhanced CIGS Solar Cell Performance,” in Proceedings of IEEE 39th Photovoltaic Specialist Conference (PVSC, 2013), pp. 1003–1007.
[Crossref]

Kübel, C.

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

Kuo, H.-C.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express 19(S5Suppl 5), A1141–A1147 (2011).
[Crossref] [PubMed]

Law, M.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[Crossref] [PubMed]

Le Donne, A.

A. Le Donne, M. Acciarri, D. Narducci, S. Marchionna, and S. Binetti, “Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency,” Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009).
[Crossref]

Lemmer, U.

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

Li, H.

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

Lin, C.-C.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express 19(S5Suppl 5), A1141–A1147 (2011).
[Crossref] [PubMed]

Lin, W.-Y.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

Liu, X.

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

Luther, J. M.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[Crossref] [PubMed]

Maier-Flaig, F.

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

Marchionna, S.

A. Le Donne, M. Acciarri, D. Narducci, S. Marchionna, and S. Binetti, “Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency,” Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009).
[Crossref]

Marconi, A.

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Mastronardi, M. L.

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

McGehee, M. D.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

McIntosh, K. R.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Micha, D. N.

D. N. Micha, A. W. Walker, G. Siefer, F. Dimroth, and A. W. Bett, “Influence of a Very Efficient Back Reflectors on the Quantum Efficiency of Solar Cells,” in Proceedings of EU-PVSEC (2016), pp. 20–24.

Narducci, D.

A. Le Donne, M. Acciarri, D. Narducci, S. Marchionna, and S. Binetti, “Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency,” Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009).
[Crossref]

Nozik, A. J.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[Crossref] [PubMed]

Ozin, G. A.

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

Pan, L. K.

Z. J. Cheng, L. K. Pan, F. F. Su, M. L. Cao, and Z. Sun, “Eu3+ doped silica film as luminescent down-shifting layer for crystalline Si solar cells,” Surf. Rev. Lett. 16(5), 669–673 (2009).
[Crossref]

Paternoster, G.

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

Pavesi, L.

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Pucker, G.

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Richards, B. S.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Sol. Energy Mater. Sol. Cells 103, 11–16 (2012).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Ross, D.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Sol. Energy Mater. Sol. Cells 103, 11–16 (2012).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Rothemund, R.

R. Rothemund, “Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers,” Sol. Energy Mater. Sol. Cells 120, 616–621 (2014).
[Crossref]

Sacks, J.

J. Sacks, R. Savidge, and A. Gabr, “Quantum efficiency measurements of down-shifting using silicon nanocrystals for photovoltaic applications,” in Proceedings of IEEE 38th Photovoltaic Specialist Conference (PVSC, 2012), pp. 92–96.
[Crossref]

Sadeghimakki, B.

B. Sadeghimakki, Z. Gao, and S. Sivoththaman, “Proof of down-conversion by CdSe/ZnS quantum dots on silicon solar cells,” in Proceedings of IEEE 40th Photovoltaic Specialist Conference (PVSC, 2014), 2262–2266.
[Crossref]

Savidge, R.

J. Sacks, R. Savidge, and A. Gabr, “Quantum efficiency measurements of down-shifting using silicon nanocrystals for photovoltaic applications,” in Proceedings of IEEE 38th Photovoltaic Specialist Conference (PVSC, 2012), pp. 92–96.
[Crossref]

Seyrling, S.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

Sgrignuoli, F.

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Siefer, G.

D. N. Micha, A. W. Walker, G. Siefer, F. Dimroth, and A. W. Bett, “Influence of a Very Efficient Back Reflectors on the Quantum Efficiency of Solar Cells,” in Proceedings of EU-PVSEC (2016), pp. 20–24.

Sivoththaman, S.

B. Sadeghimakki, Z. Gao, and S. Sivoththaman, “Proof of down-conversion by CdSe/ZnS quantum dots on silicon solar cells,” in Proceedings of IEEE 40th Photovoltaic Specialist Conference (PVSC, 2014), 2262–2266.
[Crossref]

Stolz, T.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Storiz, P.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Su, F. F.

Z. J. Cheng, L. K. Pan, F. F. Su, M. L. Cao, and Z. Sun, “Eu3+ doped silica film as luminescent down-shifting layer for crystalline Si solar cells,” Surf. Rev. Lett. 16(5), 669–673 (2009).
[Crossref]

Sun, Z.

Z. J. Cheng, L. K. Pan, F. F. Su, M. L. Cao, and Z. Sun, “Eu3+ doped silica film as luminescent down-shifting layer for crystalline Si solar cells,” Surf. Rev. Lett. 16(5), 669–673 (2009).
[Crossref]

Timmerman, D.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Tiwari, A. N.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

Trojnar, A.

A. M. Gabr, A. Walker, A. Trojnar, T. J. Hall, R. N. Kleiman, and K. Hinzer, “Numerical Modeling of Silicon Nanocrystal Down - Shifting Layers for Enhanced CIGS Solar Cell Performance,” in Proceedings of IEEE 39th Photovoltaic Specialist Conference (PVSC, 2013), pp. 1003–1007.
[Crossref]

Tsai, M.-A.

Tsai, Y.-L.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express 19(S5Suppl 5), A1141–A1147 (2011).
[Crossref] [PubMed]

Valenta, J.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Walker, A.

A. M. Gabr, A. Walker, A. Trojnar, T. J. Hall, R. N. Kleiman, and K. Hinzer, “Numerical Modeling of Silicon Nanocrystal Down - Shifting Layers for Enhanced CIGS Solar Cell Performance,” in Proceedings of IEEE 39th Photovoltaic Specialist Conference (PVSC, 2013), pp. 1003–1007.
[Crossref]

Walker, A. W.

D. N. Micha, A. W. Walker, G. Siefer, F. Dimroth, and A. W. Bett, “Influence of a Very Efficient Back Reflectors on the Quantum Efficiency of Solar Cells,” in Proceedings of EU-PVSEC (2016), pp. 20–24.

Wang, H.-W.

Wu, D.

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

Yang, J.

C. Cheng and J. Yang, “Hydrothermal synthesis of Eu3+ -Doped Y(OH)3 nanotubes as downconversion materials for efficiency enhancement of screen-printed monocrystalline silicon solar cells,” IEEE Electron Device Lett. 33(5), 697–699 (2012).
[Crossref]

Ye, T.

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

Yeh, Y.-L.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

Yu, P.

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express 19(S5Suppl 5), A1141–A1147 (2011).
[Crossref] [PubMed]

Yuan, Z.

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Adv. Mater. (1)

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

IEEE Electron Device Lett. (1)

C. Cheng and J. Yang, “Hydrothermal synthesis of Eu3+ -Doped Y(OH)3 nanotubes as downconversion materials for efficiency enhancement of screen-printed monocrystalline silicon solar cells,” IEEE Electron Device Lett. 33(5), 697–699 (2012).
[Crossref]

J. Appl. Phys. (2)

F. Sgrignuoli, G. Paternoster, A. Marconi, P. Ingenhoven, A. Anopchenko, G. Pucker, and L. Pavesi, “Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance,” J. Appl. Phys. 111(3), 34303 (2012).
[Crossref]

W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, and T. Ye, “Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation,” J. Appl. Phys. 109(5), 1–7 (2011).
[Crossref]

Nano Lett. (2)

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[Crossref] [PubMed]

M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, “Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals,” Nano Lett. 12(1), 337–342 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Prog. Photovolt. Res. Appl. (2)

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

A. Le Donne, M. Acciarri, D. Narducci, S. Marchionna, and S. Binetti, “Encapsulating Eu3+ complex doped layers to improve Si-based solar cell efficiency,” Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009).
[Crossref]

Sci. Rep. (1)

H.-V. Han, C.-C. Lin, Y.-L. Tsai, H.-C. Chen, K.-J. Chen, Y.-L. Yeh, W.-Y. Lin, H.-C. Kuo, and P. Yu, “A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization,” Sci. Rep. 4(1), 5734 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (5)

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Sol. Energy Mater. Sol. Cells 103, 11–16 (2012).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

R. Rothemund, “Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers,” Sol. Energy Mater. Sol. Cells 120, 616–621 (2014).
[Crossref]

Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, and L. Pavesi, “Silicon nanocrystals as a photoluminescence down shifter for solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 1224–1227 (2011).
[Crossref]

Surf. Rev. Lett. (1)

Z. J. Cheng, L. K. Pan, F. F. Su, M. L. Cao, and Z. Sun, “Eu3+ doped silica film as luminescent down-shifting layer for crystalline Si solar cells,” Surf. Rev. Lett. 16(5), 669–673 (2009).
[Crossref]

Other (8)

B. Sadeghimakki, Z. Gao, and S. Sivoththaman, “Proof of down-conversion by CdSe/ZnS quantum dots on silicon solar cells,” in Proceedings of IEEE 40th Photovoltaic Specialist Conference (PVSC, 2014), 2262–2266.
[Crossref]

A. M. Gabr, A. Walker, A. Trojnar, T. J. Hall, R. N. Kleiman, and K. Hinzer, “Numerical Modeling of Silicon Nanocrystal Down - Shifting Layers for Enhanced CIGS Solar Cell Performance,” in Proceedings of IEEE 39th Photovoltaic Specialist Conference (PVSC, 2013), pp. 1003–1007.
[Crossref]

D. N. Micha, A. W. Walker, G. Siefer, F. Dimroth, and A. W. Bett, “Influence of a Very Efficient Back Reflectors on the Quantum Efficiency of Solar Cells,” in Proceedings of EU-PVSEC (2016), pp. 20–24.

S. J. Orfanidis, “Electromagnetic Waves and Antennas,” http://www.ece.rutgers.edu/~orfanidi/ewa/ . [Accessed: 08-Jan-2017].

A. M. Gabr, Modelling and Characterization of Down-Conversion and Down-Shifting Processes for Photovoltaic Applications (University of Ottawa, 2016).

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd, (2010).

J. Sacks, R. Savidge, and A. Gabr, “Quantum efficiency measurements of down-shifting using silicon nanocrystals for photovoltaic applications,” in Proceedings of IEEE 38th Photovoltaic Specialist Conference (PVSC, 2012), pp. 92–96.
[Crossref]

J. Sacks, Spectral Engineering via Silicon Nanocrystals Grown by ECR-PECVD for Photovoltaic Applications (McMaster University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) A schematic of silicon solar cell with a double down-shifting layer on the top surface. Measured b) EQE and c) reflectance of the solar cell with no DS layer (dashed blue line) and the solar cell with DS layer (solid red line).

Fig. 2
Fig. 2

Measured total reflectance, total absorption ( = 1-Rtot), simulated parasitic absorption and calculated absorption in the active layer as a function of wavelength of the a) reference silicon solar cell with titanium silicate as an ARC and b) a silicon solar cell with titanium silicate as an ARC coupled to Si-nC based DS layer.

Fig. 3
Fig. 3

Calculated IQE of the solar cell with and without the DS layer.

Fig. 4
Fig. 4

a) Simulated external quantum efficiencies of the silicon solar cell coupled to DS layer as a function of DS efficiency. The measured EQE (dotted black) of the solar cell with DS layer is also shown for comparison. b) Calculated normalized short-circuit current densities components as a function of DS efficiency.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

J sc =q ϕ(λ)EQE(λ)dλ
EQ E tot (λ)=EQ E passive (λ)+ΔEQ E DS (λ)
EQ E passive (λ)=(1 R tot (λ) A p (λ))IQ E ref (λ)
IQE(λ)= EQE(λ) A pn (λ)
Δ J sc,passive =q ϕ(λ)(EQ E passive (λ)EQ E ref (λ))dλ.
Δ J sc,DS =Δ J sc,tot Δ J sc,passive
ΔEQ E DS (λ)= A DS (λ) η DS PL( λ ) IQ E ref ( λ )d λ
η DS (λ)= EQ E tot (λ)EQ E passive (λ) A DS (λ) PL( λ ) IQ E ref ( λ )d λ .

Metrics