Abstract

Third generation synchrotron light sources offer high photon flux, partial spatial coherence, and ~10−10 s pulse widths. These enable hard X-ray phase-contrast imaging (XPCI) with single-bunch temporal resolutions. In this work, we exploited the MHz repetition rates of synchrotron X-ray pulses combined with indirect X-ray detection to demonstrate the potential of XPCI with millions of frames per second multiple-frame recording. This allows for the visualization of aperiodic or stochastic transient processes which are impossible to be realized using single-shot or stroboscopic XPCI. We present observations of various phenomena, such as crack tip propagation in glass, shock wave propagation in water and explosion during electric arc ignition, which evolve in the order of km/s (µm/ns).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation

Alexander Rack, Francisco García-Moreno, Lukas Helfen, Manas Mukherjee, Catalina Jiménez, Tatjana Rack, Peter Cloetens, and John Banhart
Appl. Opt. 52(33) 8122-8127 (2013)

High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation

Atsushi Momose, Wataru Yashiro, Hirohide Maikusa, and Yoshihiro Takeda
Opt. Express 17(15) 12540-12545 (2009)

Development of microperiodic mirrors for hard x-ray phase-contrast imaging

Dan Stutman, Michael Finkenthal, and Nicolae Moldovan
Appl. Opt. 49(25) 4677-4686 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. W. W. Fuller, “An introduction to high speed photography and photonics,” Imaging Sci. J. 57(6), 293–302 (2009).
    [Crossref]
  2. L-3 Applied Technologies, Flash X-ray Systems, http://www2.l-3com.com/ati/solutions/irs_flash_x-ray.htm
  3. F. Mizusako, K. Ogasawara, K. Kondo, F. Saito, and H. Tamura, “Flash x-ray radiography using imaging plates for the observation of hypervelocity objects,” Rev. Sci. Instrum. 76(2), 025102 (2005).
    [Crossref]
  4. A. Momose, “Recent advances in X-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
    [Crossref]
  5. A. Snigirev, I. Snigireva, V. G. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
    [Crossref]
  6. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29(1), 133–146 (1996).
    [Crossref]
  7. K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative Phase Imaging Using Hard X Rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996).
    [Crossref] [PubMed]
  8. J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
    [Crossref]
  9. J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).
  10. Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
    [Crossref]
  11. J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
    [Crossref] [PubMed]
  12. S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
    [Crossref] [PubMed]
  13. M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
    [Crossref] [PubMed]
  14. A. Rack, F. García-Moreno, L. Helfen, M. Mukherjee, C. Jiménez, T. Rack, P. Cloetens, and J. Banhart, “Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation,” Appl. Opt. 52(33), 8122–8127 (2013).
    [Crossref] [PubMed]
  15. D. E. Eakins and D. J. Chapman, “X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source,” Rev. Sci. Instrum. 85(12), 123708 (2014).
    [Crossref] [PubMed]
  16. A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
    [Crossref] [PubMed]
  17. A. Rack, M. Scheel, and A. N. Danilewsky, “Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage,” IUCrJ 3(2), 108–114 (2016).
    [Crossref] [PubMed]
  18. A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
    [Crossref] [PubMed]
  19. A. Koch, “Lens coupled scintillating screen-CCD X-ray area detector with a high detective quantum efficiency,” Nucl. Instrum. Methods Phys. Res. A 348(2–3), 654–658 (1994).
    [Crossref]
  20. A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
    [Crossref] [PubMed]
  21. X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
    [Crossref]
  22. L. J. Koerner and S. M. Gruner, “X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging,” J. Synchrotron Radiat. 18(2), 157–164 (2011).
    [Crossref] [PubMed]
  23. H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
    [Crossref] [PubMed]
  24. T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2(3), 371–383 (2015).
    [Crossref] [PubMed]
  25. S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
    [Crossref]
  26. Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
    [Crossref]
  27. ESRF Accelerator & Source Division “Characteristics of Beam Modes at the ESRF,” http://www.esrf.fr/Accelerators/Operation/Modes
  28. Photron Ltd, FASTCAM SA-Z, “Ultra High-Speed with Unprecedented Performance and Light Sensitivity,” http://photron.com/high-speed/cameras/fastcam-sa-z/
  29. T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
    [Crossref]
  30. Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
    [Crossref]
  31. K. Miyauchi, T. Takeda, K. Hanzawa, Y. Tochigi, S. Sakai, R. Kuroda, H. Tominaga, R. Hirose, K. Takubo, Y. Kondo, and S. Sugawa, “Pixel Structure with 10 nsec Fully Charge Transfer Time for the 20M Frame Per Second Burst CMOS Image Sensor,” Proc. SPIE-IS&T Electronic Imaging 9022, 902203 (2014).
  32. R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).
  33. M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
    [Crossref] [PubMed]
  34. L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
    [Crossref]
  35. M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
    [Crossref]
  36. M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
    [Crossref]
  37. Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
    [Crossref]
  38. G. Holst and T. S. Lomheim, CMOS/CCD SENSORS and CAMERA SYSTEMS, (SPIE Press, Winter Park FL and JCD Publishing, Bellingham, Washington, USA, 2007).
  39. R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).
  40. A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15(7), 1940–1951 (1998).
    [Crossref]
  41. W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
    [Crossref]
  42. N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
    [Crossref]
  43. I. Schlichting, “Serial femtosecond crystallography: the first five years,” IUCrJ 2(2), 246–255 (2015).
    [Crossref] [PubMed]
  44. Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
    [Crossref]
  45. W. Bussière, “Electric fuses operation, a review: 1. Pre-arcing period,” IOP Conf. Series: Materials Science and Engineering 29, 012001 (2012).
    [Crossref]
  46. W. M. Conn, “Combination of electrically exploded wires and electric arc,” in Conference on Extremely High Temperatures, H. Fischer, L. C. Mansur, eds. (John Wiley & Sons, Inc., New York, 1958), p. 29.
  47. A. Coulbois, P. André, W. Bussiere, J.-L. Gelet, and D. Rochette, “Spectroscopic study of the transition stage in fuse wire,” XXth International Conference on Gas Discharges and their Applications, 1(A46), 22–25 (2014).
  48. X. Just, “Interaction entre arc et matière granulaire lors d’une coupure ultra-rapide dans un fusible,” Ph.D. Dissertation, Université Grenoble Alpes, France (2016).
  49. Princeton Instruments PI-MAX4 ICCD & emICCD, “The reference standard for time resolved imaging and spectroscopy,” http://www.princetoninstruments.com/products/PI-MAX4-emICCD
  50. pco. hsfc pro, “gateable MCP image intensifier for ultra short exposure times,” https://www.pco-tech.com/highspeed-cameras/hsfc-pro/
  51. S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
    [Crossref] [PubMed]
  52. A. P. Mancuso, Conceptual Design Report: Scienctific Instrument SPB, 2011.
  53. R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini, ESRF Upgrade Programme Phase II (2015 - 2022) Technical Design Study. http://www.esrf.fr/Apache_files/Upgrade/ESRF-orange-book.pdf
  54. T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
    [Crossref] [PubMed]
  55. Z. Wang, C. L. Morris, J. S. Kapustinsky, K. Kwiatkowski, and S.-N. Luo, “Towards hard x-ray imaging at GHz frame rate,” Rev. Sci. Instrum. 83, 10E510 (2012).
    [Crossref]

2017 (1)

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

2016 (4)

A. Rack, M. Scheel, and A. N. Danilewsky, “Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage,” IUCrJ 3(2), 108–114 (2016).
[Crossref] [PubMed]

H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
[Crossref] [PubMed]

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
[Crossref] [PubMed]

2015 (3)

T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2(3), 371–383 (2015).
[Crossref] [PubMed]

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

I. Schlichting, “Serial femtosecond crystallography: the first five years,” IUCrJ 2(2), 246–255 (2015).
[Crossref] [PubMed]

2014 (5)

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

D. E. Eakins and D. J. Chapman, “X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source,” Rev. Sci. Instrum. 85(12), 123708 (2014).
[Crossref] [PubMed]

A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

A. Rack, F. García-Moreno, L. Helfen, M. Mukherjee, C. Jiménez, T. Rack, P. Cloetens, and J. Banhart, “Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation,” Appl. Opt. 52(33), 8122–8127 (2013).
[Crossref] [PubMed]

2012 (4)

Z. Wang, C. L. Morris, J. S. Kapustinsky, K. Kwiatkowski, and S.-N. Luo, “Towards hard x-ray imaging at GHz frame rate,” Rev. Sci. Instrum. 83, 10E510 (2012).
[Crossref]

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

2011 (2)

J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
[Crossref] [PubMed]

L. J. Koerner and S. M. Gruner, “X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging,” J. Synchrotron Radiat. 18(2), 157–164 (2011).
[Crossref] [PubMed]

2010 (1)

J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).

2009 (4)

P. W. W. Fuller, “An introduction to high speed photography and photonics,” Imaging Sci. J. 57(6), 293–302 (2009).
[Crossref]

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

2008 (1)

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

2006 (2)

Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
[Crossref]

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

2005 (2)

F. Mizusako, K. Ogasawara, K. Kondo, F. Saito, and H. Tamura, “Flash x-ray radiography using imaging plates for the observation of hypervelocity objects,” Rev. Sci. Instrum. 76(2), 025102 (2005).
[Crossref]

A. Momose, “Recent advances in X-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
[Crossref]

2004 (2)

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

2003 (1)

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

2002 (2)

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

1998 (1)

1996 (2)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29(1), 133–146 (1996).
[Crossref]

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative Phase Imaging Using Hard X Rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996).
[Crossref] [PubMed]

1995 (1)

A. Snigirev, I. Snigireva, V. G. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

1994 (1)

A. Koch, “Lens coupled scintillating screen-CCD X-ray area detector with a high detective quantum efficiency,” Nucl. Instrum. Methods Phys. Res. A 348(2–3), 654–658 (1994).
[Crossref]

Almer, J. D.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Altarelli, M.

Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
[Crossref]

Arnold, B.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Banhart, J.

Barnea, Z.

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative Phase Imaging Using Hard X Rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996).
[Crossref] [PubMed]

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29(1), 133–146 (1996).
[Crossref]

Baruchel, J.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29(1), 133–146 (1996).
[Crossref]

Bazarov, I.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Beckwith, M. A.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Bhandari, H. B.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Bilderback, D.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Black, J.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Black, J. T.

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

Blazek, K.

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

Bonnin, A.

A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
[Crossref] [PubMed]

Brecher, C.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Brinkmann, R.

Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
[Crossref]

Bunk, O.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Cammarata, M.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Chapman, D. J.

M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
[Crossref] [PubMed]

D. E. Eakins and D. J. Chapman, “X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source,” Rev. Sci. Instrum. 85(12), 123708 (2014).
[Crossref] [PubMed]

Chen, W.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Chen, W. W.

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

Chewpraditkul, W.

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

Claus, B.

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Cloetens, P.

Cobble, J.

J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).

Collins, G. W.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Cookson, D. J.

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative Phase Imaging Using Hard X Rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996).
[Crossref] [PubMed]

Curfs, C.

A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
[Crossref] [PubMed]

Danilewsky, A. N.

A. Rack, M. Scheel, and A. N. Danilewsky, “Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage,” IUCrJ 3(2), 108–114 (2016).
[Crossref] [PubMed]

David, C.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

de Haas, J. T. M.

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

Delissen, T.

Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
[Crossref]

Dewald, E. L.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

Dorenbos, P.

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

Drakopoulos, M.

M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
[Crossref] [PubMed]

Dubelman, S.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Eakins, D. E.

M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
[Crossref] [PubMed]

D. E. Eakins and D. J. Chapman, “X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source,” Rev. Sci. Instrum. 85(12), 123708 (2014).
[Crossref] [PubMed]

Ercan, A.

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Etoh, T. G.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Ferrand, B.

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

Fezzaa, K.

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
[Crossref] [PubMed]

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Finkelstein, K.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Flippo, K.

J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).

Fontes, E.

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Fritz, D. M.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Fuller, P. W. W.

P. W. W. Fuller, “An introduction to high speed photography and photonics,” Imaging Sci. J. 57(6), 293–302 (2009).
[Crossref]

Funnell, C.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Galtier, E. C.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

García-Moreno, F.

Gautier, D. C.

J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).

Graafsma, H.

T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2(3), 371–383 (2015).
[Crossref] [PubMed]

Gruner, S. M.

H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
[Crossref] [PubMed]

L. J. Koerner and S. M. Gruner, “X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging,” J. Synchrotron Radiat. 18(2), 157–164 (2011).
[Crossref] [PubMed]

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Grünert, J.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Guigay, J.-P.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29(1), 133–146 (1996).
[Crossref]

Gureyev, T. E.

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative Phase Imaging Using Hard X Rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996).
[Crossref] [PubMed]

Hai, F.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Hammel, B. A.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

Hanzawa, K.

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

Hardy, L.

A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
[Crossref] [PubMed]

Hastings, J. B.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Hatsui, T.

T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2(3), 371–383 (2015).
[Crossref] [PubMed]

Helfen, L.

Hicks, D. G.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Higginbotham, A.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Hirose, R.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

Hooks, D. E.

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

Hoppe, R.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Hudspeth, M.

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Hung, D. L. S.

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Hybler, J.

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

Im, K. S.

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Im, K.-S.

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

Izumi, N.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

Je, J. H.

J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
[Crossref] [PubMed]

Jensen, B. J.

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

Jiménez, C.

Kahn-Harari, A.

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

Kamakura, Y.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Kapustinsky, J. S.

Z. Wang, C. L. Morris, J. S. Kapustinsky, K. Kwiatkowski, and S.-N. Luo, “Towards hard x-ray imaging at GHz frame rate,” Rev. Sci. Instrum. 83, 10E510 (2012).
[Crossref]

Kato, Y.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

Kawada, S.

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

Kenesei, P.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Koch, A.

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15(7), 1940–1951 (1998).
[Crossref]

A. Koch, “Lens coupled scintillating screen-CCD X-ray area detector with a high detective quantum efficiency,” Nucl. Instrum. Methods Phys. Res. A 348(2–3), 654–658 (1994).
[Crossref]

Koch, J. A.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

Koda, Y.

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

Koerner, L. J.

L. J. Koerner and S. M. Gruner, “X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging,” J. Synchrotron Radiat. 18(2), 157–164 (2011).
[Crossref] [PubMed]

Kohn, V. G.

A. Snigirev, I. Snigireva, V. G. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Kondo, K.

F. Mizusako, K. Ogasawara, K. Kondo, F. Saito, and H. Tamura, “Flash x-ray radiography using imaging plates for the observation of hypervelocity objects,” Rev. Sci. Instrum. 76(2), 025102 (2005).
[Crossref]

Kondo, Y.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Kozioziemski, B. J.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

Krafft, G.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Kreider, G.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Krzywinski, J.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Kuroda, R.

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. G. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Kwiatkowski, K.

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

Z. Wang, C. L. Morris, J. S. Kapustinsky, K. Kwiatkowski, and S.-N. Luo, “Towards hard x-ray imaging at GHz frame rate,” Rev. Sci. Instrum. 83, 10E510 (2012).
[Crossref]

Landen, O. L.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

Le, T. Y.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Lee, H. J.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Lee, J. S.

J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
[Crossref] [PubMed]

Lee, W. K.

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Lee, W.-K.

J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
[Crossref] [PubMed]

Limsuwan, P.

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

Liu, X.

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Lohse, D.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Luo, S. N.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

Luo, S.-N.

Z. Wang, C. L. Morris, J. S. Kapustinsky, K. Kwiatkowski, and S.-N. Luo, “Towards hard x-ray imaging at GHz frame rate,” Rev. Sci. Instrum. 83, 10E510 (2012).
[Crossref]

MacPhee, A. G.

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Mares, J. A.

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

Marton, Z.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Maruno, H.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Meier, V.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Merminga, L.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Miller, S. R.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Miyauchi, K.

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

Mizusako, F.

F. Mizusako, K. Ogasawara, K. Kondo, F. Saito, and H. Tamura, “Flash x-ray radiography using imaging plates for the observation of hypervelocity objects,” Rev. Sci. Instrum. 76(2), 025102 (2005).
[Crossref]

Momose, A.

A. Momose, “Recent advances in X-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
[Crossref]

Mondal, A.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Montgomery, D. S.

J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).

Mori, N.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Morris, C. L.

Z. Wang, C. L. Morris, J. S. Kapustinsky, K. Kwiatkowski, and S.-N. Luo, “Towards hard x-ray imaging at GHz frame rate,” Rev. Sci. Instrum. 83, 10E510 (2012).
[Crossref]

Moszynski, M.

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

Mukherjee, M.

Mutoh, H.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Nagarkar, V. V.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Nagler, B.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Nakazawa, T.

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

Narayanan, S.

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Nasuno, S.

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

Nejezchleb, K.

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

Nguyen, A. Q.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Nikl, M.

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

Nugent, K. A.

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative Phase Imaging Using Hard X Rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996).
[Crossref] [PubMed]

Offermann, D. T.

J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).

Ogasawara, K.

F. Mizusako, K. Ogasawara, K. Kondo, F. Saito, and H. Tamura, “Flash x-ray radiography using imaging plates for the observation of hypervelocity objects,” Rev. Sci. Instrum. 76(2), 025102 (2005).
[Crossref]

Okinaka, T.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Oudalov, N.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Padamsee, H.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Paganin, D.

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative Phase Imaging Using Hard X Rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996).
[Crossref] [PubMed]

Parab, N.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Parab, N. D.

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

Park, S. J.

J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
[Crossref] [PubMed]

Patommel, J.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Peters, I. R.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Philipp, H. T.

H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
[Crossref] [PubMed]

Pidol, L.

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

Ping, Y.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Poggemann, D.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Powell, C. F.

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Prosperetti, A.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Purohit, P.

H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
[Crossref] [PubMed]

Qi, M. L.

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Rack, A.

A. Rack, M. Scheel, and A. N. Danilewsky, “Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage,” IUCrJ 3(2), 108–114 (2016).
[Crossref] [PubMed]

M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
[Crossref] [PubMed]

A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
[Crossref] [PubMed]

A. Rack, F. García-Moreno, L. Helfen, M. Mukherjee, C. Jiménez, T. Rack, P. Cloetens, and J. Banhart, “Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation,” Appl. Opt. 52(33), 8122–8127 (2013).
[Crossref] [PubMed]

Rack, T.

Ramos, K. J.

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

Raven, C.

Reichert, H.

A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
[Crossref] [PubMed]

Renzi, M. J.

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Ross, S. K.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Ruckelshausen, A.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Rutherford, M. E.

M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
[Crossref] [PubMed]

Rutishauser, S.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Saito, F.

F. Mizusako, K. Ogasawara, K. Kondo, F. Saito, and H. Tamura, “Flash x-ray radiography using imaging plates for the observation of hypervelocity objects,” Rev. Sci. Instrum. 76(2), 025102 (2005).
[Crossref]

Salmonson, J. D.

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

Samoylova, L.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Schaller, J.

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Scheel, M.

A. Rack, M. Scheel, and A. N. Danilewsky, “Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage,” IUCrJ 3(2), 108–114 (2016).
[Crossref] [PubMed]

A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
[Crossref] [PubMed]

Schelokov, I.

A. Snigirev, I. Snigireva, V. G. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Schlenker, M.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29(1), 133–146 (1996).
[Crossref]

Schlichting, I.

I. Schlichting, “Serial femtosecond crystallography: the first five years,” IUCrJ 2(2), 246–255 (2015).
[Crossref] [PubMed]

Schroer, C. G.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Schropp, A.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Schuette, D. R.

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

Schwarz, A. S.

Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
[Crossref]

Seiboth, F.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Shanks, K. S.

H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
[Crossref] [PubMed]

Shao, F.

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

Shen, Q.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Shimada, T.

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

Shimonomura, K.

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Sinclair, C.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Singh, B.

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

Sinn, H.

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Snigirev, A.

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15(7), 1940–1951 (1998).
[Crossref]

A. Snigirev, I. Snigireva, V. G. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Snigireva, I.

A. Snigirev, I. Snigireva, V. G. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

Solovieva, N.

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

Soya, H.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Spanne, P.

Sugawa, S.

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

Sugo, H.

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

Sun, C.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Sun, J.

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

Swiderski, L.

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

Syntfeld-Kazuch, A.

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

Szczesniak, T.

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

Tagawa, Y.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Takano, Y.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Takeda, T.

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

Takehara, K.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Takubo, K.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Tamura, H.

F. Mizusako, K. Ogasawara, K. Kondo, F. Saito, and H. Tamura, “Flash x-ray radiography using imaging plates for the observation of hypervelocity objects,” Rev. Sci. Instrum. 76(2), 025102 (2005).
[Crossref]

Tate, M. W.

H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
[Crossref] [PubMed]

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Theuwissen, A. J. P.

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

Tigner, M.

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

Tochigi, Y.

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

Tominaga, H.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

Tschentscher, Th.

Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
[Crossref]

van der Meer, D.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

van Eijk, C. W. E.

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

Viana, B.

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

Virey, E.

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

Visser, C. W.

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Voloshinovskii, A.

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

Walther, J.

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Wanarak, C.

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

Wang, J.

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Wang, Y.

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Wang, Z.

Z. Wang, C. L. Morris, J. S. Kapustinsky, K. Kwiatkowski, and S.-N. Luo, “Towards hard x-ray imaging at GHz frame rate,” Rev. Sci. Instrum. 83, 10E510 (2012).
[Crossref]

Wark, J. S.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Weiss, J. T.

H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
[Crossref] [PubMed]

Weon, B. M.

J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
[Crossref] [PubMed]

White, T. G.

M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
[Crossref] [PubMed]

Winkelman, J. R.

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Witte, K.

Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
[Crossref]

Workman, J.

J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).

Yeager, J. D.

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

Yue, Y.

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Zastrau, U.

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Liu, K.-S. Im, Y. Wang, J. Wang, M. W. Tate, A. Ercan, D. R. Schuette, and S. M. Gruner, “Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography,” Appl. Phys. Lett. 94(8), 084101 (2009).
[Crossref]

IEEE J. Solid-State Circuits (1)

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous,” IEEE J. Solid-State Circuits 48(1), 329–338 (2013).
[Crossref]

IEEE Trans. Electron Dev. (1)

T. G. Etoh, D. Poggemann, G. Kreider, H. Mutoh, A. J. P. Theuwissen, A. Ruckelshausen, Y. Kondo, H. Maruno, K. Takubo, H. Soya, K. Takehara, T. Okinaka, and Y. Takano, “An Image Sensor Which Captures 100 Consecutive Frames at 1 000 000 Frames/s,” IEEE Trans. Electron Dev. 50(1), 144–151 (2003).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “High Efficiency of Lutetium Silicate Scintillators, Ce-Doped LPS, and LYSO Crystals,” IEEE Trans. Nucl. Sci. 51(3), 1084–1087 (2004).
[Crossref]

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009).
[Crossref]

Imaging Sci. J. (1)

P. W. W. Fuller, “An introduction to high speed photography and photonics,” Imaging Sci. J. 57(6), 293–302 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

N. D. Parab, J. T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W. W. Chen, “Observation of Crack Propagation in Glass Using X-ray Phase Contrast Imaging,” Int. J. Appl. Glass Sci. 5(4), 363–373 (2014).
[Crossref]

ITE Trans. MTA (2)

R. Kuroda, S. Kawada, S. Nasuno, T. Nakazawa, Y. Koda, K. Hanzawa, and S. Sugawa, “A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface,” ITE Trans. MTA 2(2), 123–130 (2014).

R. Kuroda, Y. Tochigi, K. Miyauchi, T. Takeda, H. Sugo, F. Shao, and S. Sugawa, “A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances,” ITE Trans. MTA 4(2), 149–154 (2016).

IUCrJ (3)

T. Hatsui and H. Graafsma, “X-ray imaging detectors for synchrotron and XFEL sources,” IUCrJ 2(3), 371–383 (2015).
[Crossref] [PubMed]

A. Rack, M. Scheel, and A. N. Danilewsky, “Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage,” IUCrJ 3(2), 108–114 (2016).
[Crossref] [PubMed]

I. Schlichting, “Serial femtosecond crystallography: the first five years,” IUCrJ 2(2), 246–255 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105(11), 113112 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Conf. Ser. (1)

Z. Marton, V. V. Nagarkar, S. R. Miller, C. Brecher, H. B. Bhandari, P. Kenesei, S. K. Ross, J. D. Almer, and B. Singh, “Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging,” J. Phys. Conf. Ser. 493, 012017 (2014).
[Crossref]

J. Phys. D (1)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29(1), 133–146 (1996).
[Crossref]

J. Synchrotron Radiat. (4)

A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, and H. Reichert, “Exploiting coherence for real-time studies by single-bunch imaging,” J. Synchrotron Radiat. 21(4), 815–818 (2014).
[Crossref] [PubMed]

L. J. Koerner and S. M. Gruner, “X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging,” J. Synchrotron Radiat. 18(2), 157–164 (2011).
[Crossref] [PubMed]

H. T. Philipp, M. W. Tate, P. Purohit, K. S. Shanks, J. T. Weiss, and S. M. Gruner, “High-speed X-ray imaging pixel array detector for synchrotron bunch isolation,” J. Synchrotron Radiat. 23(2), 395–403 (2016).
[Crossref] [PubMed]

M. E. Rutherford, D. J. Chapman, T. G. White, M. Drakopoulos, A. Rack, and D. E. Eakins, “Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources,” J. Synchrotron Radiat. 23(3), 685–693 (2016).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

A. Momose, “Recent advances in X-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
[Crossref]

Meas. Sci. Technol. (1)

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

Nat. Commun. (2)

J. S. Lee, B. M. Weon, S. J. Park, J. H. Je, K. Fezzaa, and W.-K. Lee, “Size limits the formation of liquid jets during bubble bursting,” Nat. Commun. 2, 367 (2011).
[Crossref] [PubMed]

S. Rutishauser, L. Samoylova, J. Krzywinski, O. Bunk, J. Grünert, H. Sinn, M. Cammarata, D. M. Fritz, and C. David, “Exploring the wavefront of hard X-ray free-electron laser radiation,” Nat. Commun. 3, 947 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

Y. Wang, X. Liu, K. S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

A. Koch, “Lens coupled scintillating screen-CCD X-ray area detector with a high detective quantum efficiency,” Nucl. Instrum. Methods Phys. Res. A 348(2–3), 654–658 (1994).
[Crossref]

Phys. Rev. Lett. (1)

K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative Phase Imaging Using Hard X Rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996).
[Crossref] [PubMed]

Phys. Rev. X (1)

Y. Tagawa, N. Oudalov, C. W. Visser, I. R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, “Highly Focused Supersonic Microjets,” Phys. Rev. X 2(3), 031002 (2012).
[Crossref]

Phys. Stat. Solidi A (1)

M. Nikl, J. A. Mares, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, and K. Blazek, “Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator,” Phys. Stat. Solidi A 201(7), R41–R44 (2004).
[Crossref]

Rev. Sci. Instrum. (8)

A. Snigirev, I. Snigireva, V. G. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[Crossref]

F. Mizusako, K. Ogasawara, K. Kondo, F. Saito, and H. Tamura, “Flash x-ray radiography using imaging plates for the observation of hypervelocity objects,” Rev. Sci. Instrum. 76(2), 025102 (2005).
[Crossref]

J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81(10), 10E529 (2010).

D. E. Eakins and D. J. Chapman, “X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source,” Rev. Sci. Instrum. 85(12), 123708 (2014).
[Crossref] [PubMed]

S. M. Gruner, D. Bilderback, I. Bazarov, K. Finkelstein, G. Krafft, L. Merminga, H. Padamsee, Q. Shen, C. Sinclair, and M. Tigner, “Energy recovery linacs as synchrotron radiation sources (invited),” Rev. Sci. Instrum. 73(3), 1402–1406 (2002).
[Crossref]

S. N. Luo, B. J. Jensen, D. E. Hooks, K. Fezzaa, K. J. Ramos, J. D. Yeager, K. Kwiatkowski, and T. Shimada, “Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source,” Rev. Sci. Instrum. 83(7), 073903 (2012).
[Crossref] [PubMed]

M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M. L. Qi, K. Fezzaa, S. N. Luo, and W. Chen, “High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading,” Rev. Sci. Instrum. 84(2), 025102 (2013).
[Crossref] [PubMed]

Z. Wang, C. L. Morris, J. S. Kapustinsky, K. Kwiatkowski, and S.-N. Luo, “Towards hard x-ray imaging at GHz frame rate,” Rev. Sci. Instrum. 83, 10E510 (2012).
[Crossref]

Sci. Rep. (1)

A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, and C. G. Schroer, “Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL,” Sci. Rep. 5(1), 11089 (2015).
[Crossref] [PubMed]

Science (1)

A. G. MacPhee, M. W. Tate, C. F. Powell, Y. Yue, M. J. Renzi, A. Ercan, S. Narayanan, E. Fontes, J. Walther, J. Schaller, S. M. Gruner, and J. Wang, “X-ray Imaging of Shock Waves Generated By High-Pressure Fuel Sprays,” Science 295(5558), 1261–1263 (2002).
[Crossref] [PubMed]

Sensors (Basel) (1)

T. G. Etoh, A. Q. Nguyen, Y. Kamakura, K. Shimonomura, T. Y. Le, and N. Mori, “The Theoretical Highest Frame Rate of Silicon Image Sensors,” Sensors (Basel) 17(3), 483 (2017).
[Crossref] [PubMed]

Synchrotron Radiat. News (1)

Th. Tschentscher, M. Altarelli, R. Brinkmann, T. Delissen, A. S. Schwarz, and K. Witte, “Technical Report: The European X-ray Free-Electron Laser Facility: A New Infrastructure for Research Using Ultrashort, Coherent X-ray Pulses of Extreme Brightness,” Synchrotron Radiat. News 19(6), 13–19 (2006).
[Crossref]

Other (13)

ESRF Accelerator & Source Division “Characteristics of Beam Modes at the ESRF,” http://www.esrf.fr/Accelerators/Operation/Modes

Photron Ltd, FASTCAM SA-Z, “Ultra High-Speed with Unprecedented Performance and Light Sensitivity,” http://photron.com/high-speed/cameras/fastcam-sa-z/

K. Miyauchi, T. Takeda, K. Hanzawa, Y. Tochigi, S. Sakai, R. Kuroda, H. Tominaga, R. Hirose, K. Takubo, Y. Kondo, and S. Sugawa, “Pixel Structure with 10 nsec Fully Charge Transfer Time for the 20M Frame Per Second Burst CMOS Image Sensor,” Proc. SPIE-IS&T Electronic Imaging 9022, 902203 (2014).

G. Holst and T. S. Lomheim, CMOS/CCD SENSORS and CAMERA SYSTEMS, (SPIE Press, Winter Park FL and JCD Publishing, Bellingham, Washington, USA, 2007).

L-3 Applied Technologies, Flash X-ray Systems, http://www2.l-3com.com/ati/solutions/irs_flash_x-ray.htm

A. P. Mancuso, Conceptual Design Report: Scienctific Instrument SPB, 2011.

R. Dimper, H. Reichert, P. Raimondi, L. S. Ortiz, F. Sette, and J. Susini, ESRF Upgrade Programme Phase II (2015 - 2022) Technical Design Study. http://www.esrf.fr/Apache_files/Upgrade/ESRF-orange-book.pdf

W. Bussière, “Electric fuses operation, a review: 1. Pre-arcing period,” IOP Conf. Series: Materials Science and Engineering 29, 012001 (2012).
[Crossref]

W. M. Conn, “Combination of electrically exploded wires and electric arc,” in Conference on Extremely High Temperatures, H. Fischer, L. C. Mansur, eds. (John Wiley & Sons, Inc., New York, 1958), p. 29.

A. Coulbois, P. André, W. Bussiere, J.-L. Gelet, and D. Rochette, “Spectroscopic study of the transition stage in fuse wire,” XXth International Conference on Gas Discharges and their Applications, 1(A46), 22–25 (2014).

X. Just, “Interaction entre arc et matière granulaire lors d’une coupure ultra-rapide dans un fusible,” Ph.D. Dissertation, Université Grenoble Alpes, France (2016).

Princeton Instruments PI-MAX4 ICCD & emICCD, “The reference standard for time resolved imaging and spectroscopy,” http://www.princetoninstruments.com/products/PI-MAX4-emICCD

pco. hsfc pro, “gateable MCP image intensifier for ultra short exposure times,” https://www.pco-tech.com/highspeed-cameras/hsfc-pro/

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (16132 KB)      Electric arc ignition

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scintillator emission decay of various materials for hard X-ray detection on the sub-µs time scale. Note the log vertical scale. The curves were generated from decay constants gathered from literature presented in reference [33]. The dashed line cursors correspond to the 176 ns and 704 ns X-ray pulse repetition intervals of the 16- and 4-bunch ESRF operation modes used for single-bunch imaging.

Fig. 2
Fig. 2

(a) Normalized spectral responsivity as provided by the manufacturers for three image sensors used in high-speed cameras: Shimadzu HPV-X2 [32]; Photron Fastcam SA-Z; and the PCO pco.dimax camera. (b) Peak-intensity-normalized scintillator emission spectra of YAG:Ce [35]; LuAG:Ce [36]; LYSO:Ce [34]; and LuI3:Ce [37].

Fig. 3
Fig. 3

Scans of the LYSO:Ce and LuAG:Ce scintillator emissions as a function of time delay with respect to single-bunch X-ray illumination. The response curves shown are for the burst image sensor camera HPV-X2 operated with inter-frame times 710 ns and 2800 ns and signal integration time of 250 ns. A response curve for the continuous image sensor (SA-Z) operated at 2778 ns and signal integration time of 248 ns with a LuAG:Ce scintillator is also shown. The dashed vertical lines indicate the 704 ns interval between X-ray pulses. The total dark noise was subtracted from each curve before normalizing the curves by their peak intensities. Each data point is an average intensity over a 50 × 50 pixels area. Exponential fits to the response curves using HPV-X2 for time delays 0 to 450 ns are also shown.

Fig. 4
Fig. 4

(a) X-ray transmission images of test charts used for spatial resolution measurements of the detector using combination of the 1 × (left) and 4 × (right) optical magnification systems with 250 µm thick LuAG:Ce (top) and LYSO:Ce (bottom) scintillators. The images were normalized so that the modulation depth of the resolvable band Mref is 1; grayscale: [0,1]. (b) Line profiles across f = 16LP/mm for the 1 × system, and f = 20LP/mm for the 4 × system.

Fig. 5
Fig. 5

Time series of single-bunch X-ray phase contrast images of crack propagation in glass observed with a camera operated at 1.4 Mfps (1/710 ns). The top panel shows the crack in the area of the glass within the white rectangle shown in the lower image. The crack is propagating upwards towards the impact point of the metal mass. The blue arrows indicate the incremental propagation of the crack between successive exposures. The grey scale indicated is normalized to the average background X-ray intensity transmitted through the glass. The image signal-to-noise-ratio (SNR) was 17.

Fig. 6
Fig. 6

Time series of single-bunch X-ray phase contrast images of laser-induced shock wave propagation in water observed with a camera operated at 1.9 Mfps (1/530 ns). The shock wave propagation was made evident by micro-cavitation seen as white speckles. The point of laser impact (L), expanding gas/ plasma (G), and propagating micro-cavitation (M) are indicated by red arrows. The grey scale indicated is normalized to the average background X-ray intensity transmitted through the liquid and glass. The image signal-to-noise-ratio (SNR) was 10.

Fig. 7
Fig. 7

Time series of X-ray radiographs of electric arc ignition (t = 23.0 µs to t = 24.0 µs) during fuse operation observed with 110 ns exposure time and at 5 Mfps. The radiographs are normalized by the X-ray intensity through the ceramic casing. The grey scale indicated is normalized to the average background X-ray intensity transmitted through the ceramic. The image signal-to-noise-ratio (SNR) was 13. (see Visualization 1)

Tables (2)

Tables Icon

Table 1 ESRF storage ring filling modes and the corresponding X-ray flux generated by U32 undulators at ID19 used for ultra-high-speed imaging.

Tables Icon

Table 2 Summary of X-ray phase-contrast imaging parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y 3 Al 5 O 12 ( YAG ):Ce;   Lu 3 Al 5 O 12 ( LuAG ):Ce;   Gd 3 Al 2 Ga 3 O 12 ( GAGG ):Ce; Cs 2 NaYBr 3 I 3 ( CNYBI ):Ce;   RdGd 2 Br 7 ( RGB ):Ce;   LuI 3 :Ce;   YI 3 :Ce;   GdI 3 :Ce; and Lu 2(1 x) Y 2x SiO 5 ( LYSO ):Ce.

Metrics