Abstract

A typo in the software implementation of Diffractive Interface Theory [Opt. Express 23, 2764 (2015) [CrossRef]  ] was found during subsequent research. The typo was corrected, yielding better-than-originally-reported agreement between Diffractive Interface Theory and full-wave numerical solutions of Maxwell equations.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Roberts, S. Inampudi, and V. A. Podolskiy, “Diffractive Interface Theory: nonlocal susceptibility approach to the optics of metasurfaces,” Opt. Express 23(3), 2764–2776 (2015).
    [Crossref] [PubMed]
  2. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  3. C. Roberts and V. A. Podolskiy, “Rigorous Diffraction Interface Theory,” Appl. Phys. Lett. 110(17), 171108 (2017).
    [Crossref]
  4. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  5. https://viktor-podolskiy-research.wiki.uml.edu/Diffraction+Interface+Theory

2017 (1)

C. Roberts and V. A. Podolskiy, “Rigorous Diffraction Interface Theory,” Appl. Phys. Lett. 110(17), 171108 (2017).
[Crossref]

2015 (1)

2013 (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

1981 (1)

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gaylord, T. K.

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Inampudi, S.

Moharam, M. G.

Podolskiy, V. A.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Roberts, C.

C. Roberts and V. A. Podolskiy, “Rigorous Diffraction Interface Theory,” Appl. Phys. Lett. 110(17), 171108 (2017).
[Crossref]

Roberts, C. M.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Roberts and V. A. Podolskiy, “Rigorous Diffraction Interface Theory,” Appl. Phys. Lett. 110(17), 171108 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Other (1)

https://viktor-podolskiy-research.wiki.uml.edu/Diffraction+Interface+Theory

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Optical properties of nano-antenna-based polarization converter; (a) cross-section of the structure and of the nano-antenna plane. The nano- antennae layer and gold ground layer are both 200nm thick ( h g ); periodicity Λ x = Λ y =68μm , antenna wire length L=82μm , antenna width w=10μm , dielectic layer height h d =33μm, and angles θ= 45 o , and α= 25 o . (b-d) Co-polarized (blue) and Cross-polarized (green) 0th order reflection calculated with DIT (solid lines) and Rigorous Coupled Wave Analysis (RCWA [4]) (dashed lines) with (b) highly lossy spacer layer [ ϵ d =3(1+2i) )], (c) medium loss spacer layer [ ϵ d =3(1+0.5i) ], and (d) low loss spacer layer [ ϵ d =3(1+0.05i) ].

Metrics