Abstract

Vibrational spectroscopy is a widespread, powerful method of recording the molecular spectra of constituent molecules within a sample in a label-free manner. As an example, Raman spectroscopy has major applications in materials science, biomedical analysis and clinical studies. The need to access deep tissues and organs in vivo has triggered major advances in fibre Raman probes that are compatible with endoscopic settings. However, imaging in confined geometries still remains out of reach for the current state of art fibre Raman systems without compromising the compactness and flexibility. Here we demonstrate Raman spectroscopic imaging via complex correction in single multimode fibre without using any additional optics and filters in the probe design. Our approach retains the information content typical to traditional fibre bundle imaging, yet within an ultra-thin footprint of diameter 125 μm which is the thinnest Raman imaging probe realised to date. We are able to acquire Raman images, including for bacteria samples, with fields of view exceeding 200 μm in diameter.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Nonredundant Raman imaging using optical eigenmodes

Sebastian Kosmeier, Svetlana Zolotovskaya, Anna Chiara De Luca, Andrew Riches, C. Simon Herrington, Kishan Dholakia, and Michael Mazilu
Optica 1(4) 257-263 (2014)

GPU accelerated toolbox for real-time beam-shaping in multimode fibres

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár
Opt. Express 22(3) 2933-2947 (2014)

Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing

Sebastian Dochow, Ines Latka, Martin Becker, Ron Spittel, Jens Kobelke, Kay Schuster, Albrecht Graf, Sven Brückner, Sonja Unger, Manfred Rothhardt, Benjamin Dietzek, Christoph Krafft, and Jürgen Popp
Opt. Express 20(18) 20156-20169 (2012)

References

  • View by:
  • |
  • |
  • |

  1. O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45, 1919–1934 (2016).
    [Crossref] [PubMed]
  2. I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Las. Phot. Rev. 7, 698–731 (2013).
    [Crossref]
  3. K. A. Esmonde-White, F. W. L. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst 136, 1675–1685 (2011).
    [Crossref] [PubMed]
  4. K. St-Arnaud, K. Aubertin, M. Strupler, M. Jermyn, K. Petrecca, D. Trudel, and F. Leblond, “Wide-field spontaneous Raman spectroscopy imaging system for biological tissue interrogation,” Opt. Lett. 41, 4692–4695 (2016).
    [Crossref] [PubMed]
  5. J. C. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67, 349–354 (2013).
    [Crossref] [PubMed]
  6. L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102, 1–4 (2013).
    [Crossref]
  7. T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
    [Crossref]
  8. Y. Hattori, Y. Komachi, T. Asakura, T. Shimosegawa, G. I. Kanai, H. Tashiro, and H. Sato, “In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope,” Appl. Spectrosc. 61, 579–584 (2007).
    [Crossref] [PubMed]
  9. I. E. Iping Petterson, J. C. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407, 8311–8320 (2015).
    [Crossref] [PubMed]
  10. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
    [Crossref] [PubMed]
  11. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
    [Crossref]
  12. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260–270 (2013).
    [Crossref] [PubMed]
  13. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
    [Crossref]
  14. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  15. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
    [Crossref]
  16. J. Ma and Y. S. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527–2533 (1996).
    [Crossref] [PubMed]
  17. J. V. Thompson, G. A. Throckmorton, B. H. Hokr, and V. V. Yakovlev, “Wavefront shaping enhanced Raman scattering in a turbid medium,” Opt. Lett. 41, 1769–1772 (2016).
    [Crossref] [PubMed]
  18. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon. 9, 529–535 (2015).
    [Crossref]
  19. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Phot. 4, 388–394 (2010).
    [Crossref]
  20. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
  21. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14, 2101–2107 (2006).
    [Crossref] [PubMed]
  22. ASTM standard E1840, “Standard guide for Raman shift standards for spectrometer calibration,” http://www.astm.org/Standards/E1840 .
  23. F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B 19, 4292–4297 (1979).
    [Crossref]
  24. L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
    [Crossref] [PubMed]
  25. S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
    [Crossref] [PubMed]
  26. S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, “The application of Raman spectroscopy for the detection and identification of microorganisms,” J. Raman Spectrosc. 47, 89–109 (2015).
    [Crossref]
  27. T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
    [Crossref]
  28. C. Shende, W. Smith, C. Brouillette, and S. Farquharson, “Drug stability analysis by Raman spectroscopy,” Pharmaceutics 6, 651–662 (2014).
    [Crossref] [PubMed]
  29. M. Vueba, M. Pina, and L. Batista de Carvalho, “Conformational stability of ibuprofen: assessed by DFT calculations and optical vibrational spectroscopy,” J. Pharm. Sci. 97, 845–859 (2008).
    [Crossref]
  30. M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
    [Crossref]
  31. S. Engelsen, “Raman spectra of carbohydrates,” http://www.models.life.ku.dk/~specarb/lactose.html .
  32. J. Komárková, H. Montoya, and J. Komárek, “Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?” Hydrobiologia 764, 249–258 (2015).
    [Crossref]
  33. M. Li, P. C. Ashok, K. Dholakia, and W. E. Huang, “Raman-activated cell counting for profiling carbon dioxide fixing microorganisms,” J. Phys. Chem. A 116, 6560–6563 (2012).
    [Crossref] [PubMed]
  34. I. V. Ermakov, M. Sharifzadeh, M. Ermakova, and W. Gellermann, “Resonance Raman detection of carotenoid antioxidants in living human tissue,” J. Biomed. Opt. 10, 064028 (2005).
    [Crossref]
  35. L. Rimai, M. E. Heyde, and D. Gill, “Vibrational Spectra,” J. Am. Chem. Soc. 95, 4493–4501 (1973).
    [Crossref] [PubMed]
  36. H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
    [Crossref] [PubMed]
  37. K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
    [Crossref]
  38. D. E. Bugay, J.-O. Henck, M. L. Longmire, and F. C. Thorley, “Raman Analysis of Pharmaceuticals,” in “Handbook of vibrational spectroscopy,” D. E. Pivonka, ed. (John Wiley & Sons, Ltd, Chichester, UK, 2007), pp. 1–24.
  39. A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
    [Crossref]
  40. M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).
  41. S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
    [Crossref] [PubMed]
  42. S. Farahi, D. Ziegler, I. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 510–512 (2013).
    [Crossref]
  43. R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Design of flexible multi-mode fiber endoscope,” Opt. Express 23, 26905–26918 (2015).
    [Crossref] [PubMed]
  44. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881–12887 (2013).
    [Crossref] [PubMed]
  45. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 1, 298–310 (1996)
    [Crossref]
  46. H. Park and T. W. Lebrun, “Parametric force analysis for measurement of arbitrary optical forces on particles trapped in air or vacuum,” ACS Photonics 10, 1451–1459 (2015)
    [Crossref]

2016 (4)

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45, 1919–1934 (2016).
[Crossref] [PubMed]

K. St-Arnaud, K. Aubertin, M. Strupler, M. Jermyn, K. Petrecca, D. Trudel, and F. Leblond, “Wide-field spontaneous Raman spectroscopy imaging system for biological tissue interrogation,” Opt. Lett. 41, 4692–4695 (2016).
[Crossref] [PubMed]

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

J. V. Thompson, G. A. Throckmorton, B. H. Hokr, and V. V. Yakovlev, “Wavefront shaping enhanced Raman scattering in a turbid medium,” Opt. Lett. 41, 1769–1772 (2016).
[Crossref] [PubMed]

2015 (9)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon. 9, 529–535 (2015).
[Crossref]

I. E. Iping Petterson, J. C. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407, 8311–8320 (2015).
[Crossref] [PubMed]

S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, “The application of Raman spectroscopy for the detection and identification of microorganisms,” J. Raman Spectrosc. 47, 89–109 (2015).
[Crossref]

J. Komárková, H. Montoya, and J. Komárek, “Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?” Hydrobiologia 764, 249–258 (2015).
[Crossref]

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
[Crossref]

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Design of flexible multi-mode fiber endoscope,” Opt. Express 23, 26905–26918 (2015).
[Crossref] [PubMed]

H. Park and T. W. Lebrun, “Parametric force analysis for measurement of arbitrary optical forces on particles trapped in air or vacuum,” ACS Photonics 10, 1451–1459 (2015)
[Crossref]

2014 (2)

C. Shende, W. Smith, C. Brouillette, and S. Farquharson, “Drug stability analysis by Raman spectroscopy,” Pharmaceutics 6, 651–662 (2014).
[Crossref] [PubMed]

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

2013 (6)

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881–12887 (2013).
[Crossref] [PubMed]

S. Farahi, D. Ziegler, I. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 510–512 (2013).
[Crossref]

J. C. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67, 349–354 (2013).
[Crossref] [PubMed]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Las. Phot. Rev. 7, 698–731 (2013).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260–270 (2013).
[Crossref] [PubMed]

2012 (5)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[Crossref]

M. Li, P. C. Ashok, K. Dholakia, and W. E. Huang, “Raman-activated cell counting for profiling carbon dioxide fixing microorganisms,” J. Phys. Chem. A 116, 6560–6563 (2012).
[Crossref] [PubMed]

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

2011 (3)

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

K. A. Esmonde-White, F. W. L. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst 136, 1675–1685 (2011).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
[Crossref] [PubMed]

2010 (3)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Phot. 4, 388–394 (2010).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

2008 (1)

M. Vueba, M. Pina, and L. Batista de Carvalho, “Conformational stability of ibuprofen: assessed by DFT calculations and optical vibrational spectroscopy,” J. Pharm. Sci. 97, 845–859 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (2)

I. V. Ermakov, M. Sharifzadeh, M. Ermakova, and W. Gellermann, “Resonance Raman detection of carotenoid antioxidants in living human tissue,” J. Biomed. Opt. 10, 064028 (2005).
[Crossref]

L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref] [PubMed]

2003 (1)

M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
[Crossref]

2002 (1)

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

1996 (2)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 1, 298–310 (1996)
[Crossref]

J. Ma and Y. S. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527–2533 (1996).
[Crossref] [PubMed]

1979 (1)

F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B 19, 4292–4297 (1979).
[Crossref]

1973 (1)

L. Rimai, M. E. Heyde, and D. Gill, “Vibrational Spectra,” J. Am. Chem. Soc. 95, 4493–4501 (1973).
[Crossref] [PubMed]

Abe, T.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

Allier, C.

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

Almeida, R. M.

L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref] [PubMed]

Andilla, J.

Ando, J.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

Asakura, T.

Ashok, P. C.

M. Li, P. C. Ashok, K. Dholakia, and W. E. Huang, “Raman-activated cell counting for profiling carbon dioxide fixing microorganisms,” J. Phys. Chem. A 116, 6560–6563 (2012).
[Crossref] [PubMed]

Aubertin, K.

Baeyens, W.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Baranska, M.

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
[Crossref]

Barbosa, J.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

Baritaux, J.-C.

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

Batista de Carvalho, L.

M. Vueba, M. Pina, and L. Batista de Carvalho, “Conformational stability of ibuprofen: assessed by DFT calculations and optical vibrational spectroscopy,” J. Pharm. Sci. 97, 845–859 (2008).
[Crossref]

Bec, J.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[Crossref]

Blondel, M.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Bocklitz, T.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Boczar, M.

M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
[Crossref]

Brouillette, C.

C. Shende, W. Smith, C. Brouillette, and S. Farquharson, “Drug stability analysis by Raman spectroscopy,” Pharmaceutics 6, 651–662 (2014).
[Crossref] [PubMed]

Brucher, M.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Bugay, D. E.

D. E. Bugay, J.-O. Henck, M. L. Longmire, and F. C. Thorley, “Raman Analysis of Pharmaceuticals,” in “Handbook of vibrational spectroscopy,” D. E. Pivonka, ed. (John Wiley & Sons, Ltd, Chichester, UK, 2007), pp. 1–24.

Campbell, E. C.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Chen, M.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon. 9, 529–535 (2015).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Phot. 4, 388–394 (2010).
[Crossref]

Conkey, D. B.

Cournapeau, D.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 1, 298–310 (1996)
[Crossref]

Czamara, K.

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
[Crossref]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Day, J. C. C.

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45, 1919–1934 (2016).
[Crossref] [PubMed]

I. E. Iping Petterson, J. C. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407, 8311–8320 (2015).
[Crossref] [PubMed]

J. C. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67, 349–354 (2013).
[Crossref] [PubMed]

Dholakia, K.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

M. Li, P. C. Ashok, K. Dholakia, and W. E. Huang, “Raman-activated cell counting for profiling carbon dioxide fixing microorganisms,” J. Phys. Chem. A 116, 6560–6563 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Phot. 4, 388–394 (2010).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Dietzek, B.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Las. Phot. Rev. 7, 698–731 (2013).
[Crossref]

Dinten, J.-M.

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

Dochow, S.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Las. Phot. Rev. 7, 698–731 (2013).
[Crossref]

Dodo, K.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

Doi, T.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

Domi, Y.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

Doronina-Amitonova, L. V.

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Dubourg, V.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Duchesnay, E.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Ermakov, I. V.

I. V. Ermakov, M. Sharifzadeh, M. Ermakova, and W. Gellermann, “Resonance Raman detection of carotenoid antioxidants in living human tissue,” J. Biomed. Opt. 10, 064028 (2005).
[Crossref]

Ermakova, M.

I. V. Ermakov, M. Sharifzadeh, M. Ermakova, and W. Gellermann, “Resonance Raman detection of carotenoid antioxidants in living human tissue,” J. Biomed. Opt. 10, 064028 (2005).
[Crossref]

Esmonde-White, F. W. L.

K. A. Esmonde-White, F. W. L. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst 136, 1675–1685 (2011).
[Crossref] [PubMed]

Esmonde-White, K. A.

K. A. Esmonde-White, F. W. L. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst 136, 1675–1685 (2011).
[Crossref] [PubMed]

Espagnon, I.

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Farahi, S.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260–270 (2013).
[Crossref] [PubMed]

S. Farahi, D. Ziegler, I. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 510–512 (2013).
[Crossref]

Farquharson, S.

C. Shende, W. Smith, C. Brouillette, and S. Farquharson, “Drug stability analysis by Raman spectroscopy,” Pharmaceutics 6, 651–662 (2014).
[Crossref] [PubMed]

Fatakdawala, H.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Fedotov, A. B.

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Fedotov, I. V.

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Fujita, K.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

Fullwood, L. M.

I. E. Iping Petterson, J. C. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407, 8311–8320 (2015).
[Crossref] [PubMed]

Galeener, F. L.

F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B 19, 4292–4297 (1979).
[Crossref]

Gardner, B.

I. E. Iping Petterson, J. C. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407, 8311–8320 (2015).
[Crossref] [PubMed]

Gellermann, W.

I. V. Ermakov, M. Sharifzadeh, M. Ermakova, and W. Gellermann, “Resonance Raman detection of carotenoid antioxidants in living human tissue,” J. Biomed. Opt. 10, 064028 (2005).
[Crossref]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Gill, D.

L. Rimai, M. E. Heyde, and D. Gill, “Vibrational Spectra,” J. Am. Chem. Soc. 95, 4493–4501 (1973).
[Crossref] [PubMed]

Gramfort, A.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Grier, D. G.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 1, 298–310 (1996)
[Crossref]

Grisel, O.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Gu, R. Y.

Hartl, B.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Hattori, Y.

Henck, J.-O.

D. E. Bugay, J.-O. Henck, M. L. Longmire, and F. C. Thorley, “Raman Analysis of Pharmaceuticals,” in “Handbook of vibrational spectroscopy,” D. E. Pivonka, ed. (John Wiley & Sons, Ltd, Chichester, UK, 2007), pp. 1–24.

Herrington, C. S.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Heyde, M. E.

L. Rimai, M. E. Heyde, and D. Gill, “Vibrational Spectra,” J. Am. Chem. Soc. 95, 4493–4501 (1973).
[Crossref] [PubMed]

Hokr, B. H.

Huang, W. E.

M. Li, P. C. Ashok, K. Dholakia, and W. E. Huang, “Raman-activated cell counting for profiling carbon dioxide fixing microorganisms,” J. Phys. Chem. A 116, 6560–6563 (2012).
[Crossref] [PubMed]

Iping Petterson, I. E.

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45, 1919–1934 (2016).
[Crossref] [PubMed]

I. E. Iping Petterson, J. C. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407, 8311–8320 (2015).
[Crossref] [PubMed]

Jamróz, D.

M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
[Crossref]

Jary, D.

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

Jermyn, M.

Kaczor, A.

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
[Crossref]

Kahn, J. M.

Kanai, G. I.

Kawalek, B.

M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
[Crossref]

Kawata, S.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Kirchhoff, J.

S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, “The application of Raman spectroscopy for the detection and identification of microorganisms,” J. Raman Spectrosc. 47, 89–109 (2015).
[Crossref]

Kochan, K.

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
[Crossref]

Koljenovic, S.

L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref] [PubMed]

Komachi, Y.

Komárek, J.

J. Komárková, H. Montoya, and J. Komárek, “Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?” Hydrobiologia 764, 249–258 (2015).
[Crossref]

Komárková, J.

J. Komárková, H. Montoya, and J. Komárek, “Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?” Hydrobiologia 764, 249–258 (2015).
[Crossref]

Krafft, C.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Las. Phot. Rev. 7, 698–731 (2013).
[Crossref]

Latka, I.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Las. Phot. Rev. 7, 698–731 (2013).
[Crossref]

Leblond, F.

Lebrun, T. W.

H. Park and T. W. Lebrun, “Parametric force analysis for measurement of arbitrary optical forces on particles trapped in air or vacuum,” ACS Photonics 10, 1451–1459 (2015)
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Leonardo, R. Di

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[Crossref]

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Li, M.

M. Li, P. C. Ashok, K. Dholakia, and W. E. Huang, “Raman-activated cell counting for profiling carbon dioxide fixing microorganisms,” J. Phys. Chem. A 116, 6560–6563 (2012).
[Crossref] [PubMed]

Li, Y. S.

Longmire, M. L.

D. E. Bugay, J.-O. Henck, M. L. Longmire, and F. C. Thorley, “Raman Analysis of Pharmaceuticals,” in “Handbook of vibrational spectroscopy,” D. E. Pivonka, ed. (John Wiley & Sons, Ltd, Chichester, UK, 2007), pp. 1–24.

Luca, A. C. De

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Ma, D.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Ma, J.

Mahalati, R. N.

Majzner, K.

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
[Crossref]

Marcu, L.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Marple, E.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Martín-Badosa, E.

Mazilu, M.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Phot. 4, 388–394 (2010).
[Crossref]

McReynolds, N.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

Michel, V.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Montes-Usategui, M.

Montoya, H.

J. Komárková, H. Montoya, and J. Komárek, “Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?” Hydrobiologia 764, 249–258 (2015).
[Crossref]

Morris, M. D.

K. A. Esmonde-White, F. W. L. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst 136, 1675–1685 (2011).
[Crossref] [PubMed]

Moser, C.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260–270 (2013).
[Crossref] [PubMed]

S. Farahi, D. Ziegler, I. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 510–512 (2013).
[Crossref]

Nakagawa, H.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

Neugebauer, U.

S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, “The application of Raman spectroscopy for the detection and identification of microorganisms,” J. Raman Spectrosc. 47, 89–109 (2015).
[Crossref]

Niv, E.

Ochida, M.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

Ogumi, Z.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

Pacia, M. Z.

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
[Crossref]

Palonpon, A.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

Papadopoulos, I.

S. Farahi, D. Ziegler, I. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 510–512 (2013).
[Crossref]

Papadopoulos, I. N.

Park, H.

H. Park and T. W. Lebrun, “Parametric force analysis for measurement of arbitrary optical forces on particles trapped in air or vacuum,” ACS Photonics 10, 1451–1459 (2015)
[Crossref]

Passos, A.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Pedregosa, F.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Perrot, M.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Petrecca, K.

Piestun, R.

Pina, M.

M. Vueba, M. Pina, and L. Batista de Carvalho, “Conformational stability of ibuprofen: assessed by DFT calculations and optical vibrational spectroscopy,” J. Pharm. Sci. 97, 845–859 (2008).
[Crossref]

Pleguezuelos, E.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon. 9, 529–535 (2015).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Popp, J.

S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, “The application of Raman spectroscopy for the detection and identification of microorganisms,” J. Raman Spectrosc. 47, 89–109 (2015).
[Crossref]

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Las. Phot. Rev. 7, 698–731 (2013).
[Crossref]

Powis, S. J.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

Prettenhofer, P.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Psaltis, D.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260–270 (2013).
[Crossref] [PubMed]

S. Farahi, D. Ziegler, I. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 510–512 (2013).
[Crossref]

Puppels, G. J.

L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref] [PubMed]

Remon, J. P.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Riches, A.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Rimai, L.

L. Rimai, M. E. Heyde, and D. Gill, “Vibrational Spectra,” J. Am. Chem. Soc. 95, 4493–4501 (1973).
[Crossref] [PubMed]

Roessler, B. J.

K. A. Esmonde-White, F. W. L. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst 136, 1675–1685 (2011).
[Crossref] [PubMed]

Rösch, P.

S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, “The application of Raman spectroscopy for the detection and identification of microorganisms,” J. Raman Spectrosc. 47, 89–109 (2015).
[Crossref]

Santos, L. F.

L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref] [PubMed]

Sato, H.

Schmitt, M.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Schultz, E.

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

Sharifzadeh, M.

I. V. Ermakov, M. Sharifzadeh, M. Ermakova, and W. Gellermann, “Resonance Raman detection of carotenoid antioxidants in living human tissue,” J. Biomed. Opt. 10, 064028 (2005).
[Crossref]

Shende, C.

C. Shende, W. Smith, C. Brouillette, and S. Farquharson, “Drug stability analysis by Raman spectroscopy,” Pharmaceutics 6, 651–662 (2014).
[Crossref] [PubMed]

Shimosegawa, T.

Simon, A. C.

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

Smith, W.

C. Shende, W. Smith, C. Brouillette, and S. Farquharson, “Drug stability analysis by Raman spectroscopy,” Pharmaceutics 6, 651–662 (2014).
[Crossref] [PubMed]

Sodeoka, M.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

St-Arnaud, K.

Stevens, O.

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45, 1919–1934 (2016).
[Crossref] [PubMed]

Stöckel, S.

S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, “The application of Raman spectroscopy for the detection and identification of microorganisms,” J. Raman Spectrosc. 47, 89–109 (2015).
[Crossref]

Stone, N.

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45, 1919–1934 (2016).
[Crossref] [PubMed]

I. E. Iping Petterson, J. C. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407, 8311–8320 (2015).
[Crossref] [PubMed]

J. C. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67, 349–354 (2013).
[Crossref] [PubMed]

Strola, S. A.

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

Strupler, M.

Szczeponek, K.

M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
[Crossref]

Tashiro, H.

Thirion, B.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Thompson, J. V.

Thorley, F. C.

D. E. Bugay, J.-O. Henck, M. L. Longmire, and F. C. Thorley, “Raman Analysis of Pharmaceuticals,” in “Handbook of vibrational spectroscopy,” D. E. Pivonka, ed. (John Wiley & Sons, Ltd, Chichester, UK, 2007), pp. 1–24.

Throckmorton, G. A.

Trudel, D.

Tsubouchi, S.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon. 9, 529–535 (2015).
[Crossref]

Urmey, K.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Van der Weken, G.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Vanderplas, J.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Vankeirsbilck, T.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Varoquaux, G.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Vercauteren, A.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Vergote, G.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Verpoort, F.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Vueba, M.

M. Vueba, M. Pina, and L. Batista de Carvalho, “Conformational stability of ibuprofen: assessed by DFT calculations and optical vibrational spectroscopy,” J. Pharm. Sci. 97, 845–859 (2008).
[Crossref]

Wachsmann-Hogiu, S.

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

Weiss, R.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

Wójcik, M. J.

M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
[Crossref]

Wolthuis, R.

L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref] [PubMed]

Yakovlev, V. V.

Yamakoshi, H.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

Yamanaka, T.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Zheltikov, A. M.

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Ziegler, D.

S. Farahi, D. Ziegler, I. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 510–512 (2013).
[Crossref]

ZieÌaba, A.

M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
[Crossref]

ACS Photonics (1)

H. Park and T. W. Lebrun, “Parametric force analysis for measurement of arbitrary optical forces on particles trapped in air or vacuum,” ACS Photonics 10, 1451–1459 (2015)
[Crossref]

Anal. Bioanal. Chem. (2)

S. Dochow, D. Ma, I. Latka, T. Bocklitz, B. Hartl, J. Bec, H. Fatakdawala, E. Marple, K. Urmey, S. Wachsmann-Hogiu, M. Schmitt, L. Marcu, and J. Popp, “Combined fiber probe for fluorescence lifetime and Raman spectroscopy,” Anal. Bioanal. Chem. 407, 8291–8301 (2015).
[Crossref] [PubMed]

I. E. Iping Petterson, J. C. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407, 8311–8320 (2015).
[Crossref] [PubMed]

Anal. Chem. (2)

L. F. Santos, R. Wolthuis, S. Koljenović, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref] [PubMed]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Analyst (1)

K. A. Esmonde-White, F. W. L. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst 136, 1675–1685 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Appl. Spectrosc. (2)

Biomed. Opt. Express (1)

Chem. Phys. (1)

M. Boczar, M. J. Wójcik, K. Szczeponek, D. Jamróz, A. ZieÌaba, and B. Kawałek, “Theoretical modeling of infrared spectra of aspirin and its deuterated derivative,” Chem. Phys. 286, 63–79 (2003).
[Crossref]

Chem. Soc. Rev. (1)

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45, 1919–1934 (2016).
[Crossref] [PubMed]

Hydrobiologia (1)

J. Komárková, H. Montoya, and J. Komárek, “Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?” Hydrobiologia 764, 249–258 (2015).
[Crossref]

J. Am. Chem. Soc. (2)

L. Rimai, M. E. Heyde, and D. Gill, “Vibrational Spectra,” J. Am. Chem. Soc. 95, 4493–4501 (1973).
[Crossref] [PubMed]

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

I. V. Ermakov, M. Sharifzadeh, M. Ermakova, and W. Gellermann, “Resonance Raman detection of carotenoid antioxidants in living human tissue,” J. Biomed. Opt. 10, 064028 (2005).
[Crossref]

S. A. Strola, J.-C. Baritaux, E. Schultz, A. C. Simon, C. Allier, I. Espagnon, D. Jary, and J.-M. Dinten, “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt. 19, 111610 (2014).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 1, 298–310 (1996)
[Crossref]

J. Mach. Learn. Res. (1)

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

J. Pharm. Sci. (1)

M. Vueba, M. Pina, and L. Batista de Carvalho, “Conformational stability of ibuprofen: assessed by DFT calculations and optical vibrational spectroscopy,” J. Pharm. Sci. 97, 845–859 (2008).
[Crossref]

J. Phys. Chem. A (1)

M. Li, P. C. Ashok, K. Dholakia, and W. E. Huang, “Raman-activated cell counting for profiling carbon dioxide fixing microorganisms,” J. Phys. Chem. A 116, 6560–6563 (2012).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120, 2585–2591 (2016).
[Crossref]

J. Raman Spectrosc. (2)

S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, “The application of Raman spectroscopy for the detection and identification of microorganisms,” J. Raman Spectrosc. 47, 89–109 (2015).
[Crossref]

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, “Raman spectroscopy of lipids: a review,” J. Raman Spectrosc. 46, 4–20 (2015).
[Crossref]

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[Crossref]

Las. Phot. Rev. (1)

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development,” Las. Phot. Rev. 7, 698–731 (2013).
[Crossref]

Nat. Commun. (1)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Nat. Photon. (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon. 9, 529–535 (2015).
[Crossref]

Nature Phot. (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Phot. 4, 388–394 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Pharmaceutics (1)

C. Shende, W. Smith, C. Brouillette, and S. Farquharson, “Drug stability analysis by Raman spectroscopy,” Pharmaceutics 6, 651–662 (2014).
[Crossref] [PubMed]

Phys. Rev. B (1)

F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses,” Phys. Rev. B 19, 4292–4297 (1979).
[Crossref]

Phys. Rev. Lett. (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

PLOS ONE (1)

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic Cells,” PLOS ONE 10, 1–14 (2015).

Trends Anal. Chem. (1)

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21, 869–877 (2002).
[Crossref]

Other (3)

ASTM standard E1840, “Standard guide for Raman shift standards for spectrometer calibration,” http://www.astm.org/Standards/E1840 .

S. Engelsen, “Raman spectra of carbohydrates,” http://www.models.life.ku.dk/~specarb/lactose.html .

D. E. Bugay, J.-O. Henck, M. L. Longmire, and F. C. Thorley, “Raman Analysis of Pharmaceuticals,” in “Handbook of vibrational spectroscopy,” D. E. Pivonka, ed. (John Wiley & Sons, Ltd, Chichester, UK, 2007), pp. 1–24.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup and performance. (a) Schematics of the optical setup (multimode fibre, MMF; dichroic mirror, DM; notch filter, NF; flip mirror, FM; lenses, L). (b–d) Beam shape on the fibre axis at 50 μm, 270 μm, and 450 μm away from the facet, respectively. Scale bars are 3 μm. (e–g) Power fraction in the focus at the corresponding distances, resulting in ø50 μm, ø100 μm, and ø200 μm FOVs. Grey scale bars are 20 μm, total bar length in (g) is 40 μm.

Fig. 2
Fig. 2

Raman imaging of polystyrene particles dried on a glass coverslip. (a) Background (black dotted) and polystyrene (red solid) spectral information (treated as described in the Methods). Note the different scales for the two curves. (b) Bright field image of the particles. (c) Weights for polystyrene spectral components, showing a Raman image of the particle distribution. Scale bars are 20 μm.

Fig. 3
Fig. 3

Raman imaging of M. smegmatis bacterium clusters. (a) Spectral intensity in the 2600–3500 cm−1 region. (b) Bright field image of bacterial clusters, also showing the presence of individual bacteria. (c) Normalized weights for the spectral component shown in (a) to create a Raman image. Note we presently do not have the sensitivity to observe individual bacteria. Scale bars are 20 μm.

Fig. 4
Fig. 4

Raman imaging of paracetamol and ibuprofen clusters for a ø50 μm (a–c), ø100 μm (d–f), and ø200 μm (g–i) field of view. (a,d,g) Spectral components for paracetamol (dashed red), ibuprofen (solid green), aspirin (dot-dash blue), lactose (dotted black). (b,e,h) Bright field image of drug clusters. (c,f,i) Raman image of drug clusters with red for paracetamol, green for ibuprofen, blue for aspirin, and white for lactose. White scale bars are 20 μm. Full scale bars on (h,i) are 40 μm.

Fig. 5
Fig. 5

Raman signal from cyanobacterium Limnoraphis robusta (a), and a trapped 11 μm polystyrene bead (b).

Fig. 6
Fig. 6

Normalized collection efficiency as a function of source position. (a) 2D map of collection efficiency. Solid lines depict 0.22 NA divergence. (b–f) Efficiency profiles at (b) 50 μm=0.45L, (c) 110.8 μm=L, (d) 221.6 μm=2L, (e) 270 μm≈ 2.43L, (f) 332.4 μm= 3L.

Fig. 7
Fig. 7

Trap stiffness for 5 μm and 11 μm spheres as a function of power.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A C W F r o 2 + α W 1 .
R = W p a r a c e t a m o l + W l a c t o s e
G = W i b u p r o f e n + W l a c t o s e
B = W a s p i r i n + W l a c t o s e
C * = C T , W * = T 1 W
A C W = C * W *
K = 2 π λ N A
P = 2 K 2 0 m i n ( k m a x , K ) k d k = m i n ( k m a x 2 K 2 , 1 ) .
P = ( k m a x / K ) 2 = sin 2 ( arctan ( R / d ) ) = ( R / d ) 2 + O ( ( R / d ) 3 ) .
k = k b T / x 2 .

Metrics