Abstract

Self-assembly fabrication methods can produce aggregates of metallic nanoparticles separated by nanometer distances which act as versatile platforms for field-enhanced spectroscopy due to the strong fields induced at the interparticle gaps. In this letter we show the advantages of using particles with large flat facets at the gap as the building elements of the aggregates. For this purpose, we analyze theoretically the plasmonic response of chains of metallic particles of increasing length. These chains may be a direct product of the chemical synthesis and can be seen as the key structural unit behind the plasmonic response of two and three dimensional self-assembled aggregates. The longitudinal chain plasmon that dominates the optical response redshifts following an exponential dependence on the number of particles in the chain for all facets studied, with a saturation wavelength and a characteristic decay length depending linearly on the diameter of the facet. According to our calculations, for small Au particles of 50 nm size separated by a 1 nanometer gap, the saturation wavelength for the largest facets considered correspond to a wavelength shift of ≈ 1200 nm with respect to the single particle resonance, compared to shifts of only ≈ 200 nm for the equivalent configuration of perfectly spherical particles. The corresponding decay lengths are 11.8 particles for the faceted nanoparticles and 3.5 particles for the spherical ones. Thus, large flat facets lead to an excellent tunability of the longitudinal chain plasmon, covering the whole biological window and beyond. Furthermore, the maximum near-field at the gap is only moderately weaker for faceted gaps than for spherical particles, while the region of strong local field enhancement extends over a considerably larger volume, allowing to accommodate more target molecules. Our results indicate that flat facets introduce significant advantages for spectroscopic and sensing applications using self-assembled aggregates.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
    [Crossref]
  2. R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
    [Crossref] [PubMed]
  3. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  4. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [Crossref] [PubMed]
  5. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357 (1999).
    [Crossref]
  6. J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [Crossref]
  7. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [Crossref] [PubMed]
  8. I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
    [Crossref]
  9. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
    [Crossref] [PubMed]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  11. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
    [Crossref] [PubMed]
  12. T.-C. Lee and O. A. Scherman, “Formation of dynamic aggregates in water by cucurbit [5] uril capped with gold nanoparticles,” Chem. Commun. 46, 2438–2440 (2010).
    [Crossref]
  13. Y. Kang, K. J. Erickson, and T. A. Taton, “Plasmonic nanoparticle chains via a morphological, sphere-to-string transition,” J. Am. Chem. Soc. 127, 13800–13801 (2005).
    [Crossref] [PubMed]
  14. R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
    [Crossref] [PubMed]
  15. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
    [Crossref] [PubMed]
  16. R. W. Taylor, R. Esteban, S. Mahajan, J. Aizpurua, and J. J. Baumberg, “Optimizing sers from gold nanoparticle clusters: Addressing the near field by an embedded chain plasmon model,” J. Phys. Chem. C 120, 10512–10522 (2016).
    [Crossref]
  17. A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
    [Crossref]
  18. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
    [Crossref]
  19. P. Ghenuche, I. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, “Cavity resonances in finite plasmonic chains,” Appl. Phys. Lett. 90, 041109 (2007).
    [Crossref]
  20. N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C 113, 2784–2791 (2009).
    [Crossref]
  21. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004).
    [Crossref] [PubMed]
  22. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
    [Crossref] [PubMed]
  23. C. Girard, E. Dujardin, M. Li, and S. Mann, “Theoretical near-field optical properties of branched plasmonic nanoparticle networks,” Phys. Rev. Lett. 97, 100801 (2006).
    [Crossref] [PubMed]
  24. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486 (1994).
    [Crossref] [PubMed]
  25. V. M. Shalaev, R. Botet, D. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
    [Crossref]
  26. S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
    [Crossref] [PubMed]
  27. L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
    [Crossref] [PubMed]
  28. T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
    [Crossref] [PubMed]
  29. Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1, 228–234 (2014).
    [Crossref]
  30. D. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5, 985–989 (2005).
    [Crossref] [PubMed]
  31. M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18, 7528–7542 (2010).
    [Crossref] [PubMed]
  32. R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
    [Crossref]
  33. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
    [Crossref] [PubMed]
  34. M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
    [Crossref] [PubMed]
  35. S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
    [PubMed]
  36. K. G. Thomas, S. Barazzouk, B. I. Ipe, S. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B 108, 13066–13068 (2004).
    [Crossref]
  37. P. Y. Kim, J.-W. Oh, and J.-M. Nam, “Controlled co-assembly of nanoparticles and polymer into ultralong and continuous one-dimensional nanochains,” J. Am. Chem. Soc. 137, 8030–8033 (2015).
    [Crossref] [PubMed]
  38. A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
    [Crossref] [PubMed]
  39. C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
    [Crossref]
  40. N. Ortiz and S. E. Skrabalak, “On the dual roles of ligands in the synthesis of colloidal metal nanostructures,” Langmuir 30, 6649–6659 (2014).
    [Crossref] [PubMed]
  41. R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
    [Crossref]
  42. F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
    [Crossref] [PubMed]
  43. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  44. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
    [Crossref] [PubMed]
  45. F. G. De Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873 (1997).
    [Crossref]
  46. F. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [Crossref]
  47. A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
    [Crossref]
  48. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [Crossref] [PubMed]
  49. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
    [Crossref] [PubMed]
  50. M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Phot. Nano. Fund. Appl. 10, 166–176 (2012).
    [Crossref]
  51. F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
    [Crossref]
  52. B. P. Joshi and Q.-H. Wei, “Cavity resonances of metal-dielectric-metal nanoantennas,” Opt. Express 16, 10315–10322 (2008).
    [Crossref] [PubMed]
  53. T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75, 073402 (2007).
    [Crossref]
  54. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
    [Crossref]
  55. C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
    [Crossref]
  56. E. C. Le Ru, W. R. Somerville, and B. Auguié, “Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers,” Phys. Rev. A 87, 012504 (2013).
    [Crossref]
  57. Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
    [Crossref] [PubMed]
  58. T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
    [Crossref]
  59. Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in ters configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
    [Crossref]
  60. V. Lebedev, S. Vergeles, and P. Vorobev, “Giant enhancement of electric field between two close metallic grains due to plasmonic resonance,” Opt. Lett. 35, 640–642 (2010).
    [Crossref] [PubMed]
  61. S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
    [Crossref]
  62. L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
    [Crossref] [PubMed]
  63. C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
    [Crossref] [PubMed]
  64. L. Chuntonov, M. Bar-Sadan, L. Houben, and G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles,” Nano Lett. 12, 145–150 (2011).
    [Crossref]
  65. M. Zhu, P. Chen, W. Ma, B. Lei, and M. Liu, “Template-free synthesis of cube-like ag/agcl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts,” ACS Appl. Mater. Interfaces 4, 6386–6392 (2012).
    [Crossref] [PubMed]

2016 (1)

R. W. Taylor, R. Esteban, S. Mahajan, J. Aizpurua, and J. J. Baumberg, “Optimizing sers from gold nanoparticle clusters: Addressing the near field by an embedded chain plasmon model,” J. Phys. Chem. C 120, 10512–10522 (2016).
[Crossref]

2015 (5)

P. Y. Kim, J.-W. Oh, and J.-M. Nam, “Controlled co-assembly of nanoparticles and polymer into ultralong and continuous one-dimensional nanochains,” J. Am. Chem. Soc. 137, 8030–8033 (2015).
[Crossref] [PubMed]

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
[Crossref]

2014 (7)

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

N. Ortiz and S. E. Skrabalak, “On the dual roles of ligands in the synthesis of colloidal metal nanostructures,” Langmuir 30, 6649–6659 (2014).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1, 228–234 (2014).
[Crossref]

2013 (4)

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

E. C. Le Ru, W. R. Somerville, and B. Auguié, “Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers,” Phys. Rev. A 87, 012504 (2013).
[Crossref]

2012 (5)

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Phot. Nano. Fund. Appl. 10, 166–176 (2012).
[Crossref]

M. Zhu, P. Chen, W. Ma, B. Lei, and M. Liu, “Template-free synthesis of cube-like ag/agcl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts,” ACS Appl. Mater. Interfaces 4, 6386–6392 (2012).
[Crossref] [PubMed]

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[Crossref] [PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

2011 (3)

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

L. Chuntonov, M. Bar-Sadan, L. Houben, and G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles,” Nano Lett. 12, 145–150 (2011).
[Crossref]

2010 (7)

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[Crossref] [PubMed]

V. Lebedev, S. Vergeles, and P. Vorobev, “Giant enhancement of electric field between two close metallic grains due to plasmonic resonance,” Opt. Lett. 35, 640–642 (2010).
[Crossref] [PubMed]

M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18, 7528–7542 (2010).
[Crossref] [PubMed]

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref] [PubMed]

T.-C. Lee and O. A. Scherman, “Formation of dynamic aggregates in water by cucurbit [5] uril capped with gold nanoparticles,” Chem. Commun. 46, 2438–2440 (2010).
[Crossref]

2009 (5)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C 113, 2784–2791 (2009).
[Crossref]

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in ters configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

2008 (7)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[Crossref]

B. P. Joshi and Q.-H. Wei, “Cavity resonances of metal-dielectric-metal nanoantennas,” Opt. Express 16, 10315–10322 (2008).
[Crossref] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

2007 (3)

P. Ghenuche, I. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, “Cavity resonances in finite plasmonic chains,” Appl. Phys. Lett. 90, 041109 (2007).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75, 073402 (2007).
[Crossref]

2006 (4)

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[Crossref]

C. Girard, E. Dujardin, M. Li, and S. Mann, “Theoretical near-field optical properties of branched plasmonic nanoparticle networks,” Phys. Rev. Lett. 97, 100801 (2006).
[Crossref] [PubMed]

2005 (6)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Y. Kang, K. J. Erickson, and T. A. Taton, “Plasmonic nanoparticle chains via a morphological, sphere-to-string transition,” J. Am. Chem. Soc. 127, 13800–13801 (2005).
[Crossref] [PubMed]

D. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5, 985–989 (2005).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[Crossref]

2004 (2)

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004).
[Crossref] [PubMed]

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B 108, 13066–13068 (2004).
[Crossref]

2002 (1)

F. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357 (1999).
[Crossref]

1997 (1)

F. G. De Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873 (1997).
[Crossref]

1994 (2)

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486 (1994).
[Crossref] [PubMed]

V. M. Shalaev, R. Botet, D. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Abajo, F. G. De

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

F. G. De Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873 (1997).
[Crossref]

Abo-Hamed, E. K.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

Aguirregabiria, G.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

Ahmed, A.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Aizpurua, J.

R. W. Taylor, R. Esteban, S. Mahajan, J. Aizpurua, and J. J. Baumberg, “Optimizing sers from gold nanoparticle clusters: Addressing the near field by an embedded chain plasmon model,” J. Phys. Chem. C 120, 10512–10522 (2016).
[Crossref]

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
[Crossref]

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in ters configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

F. G. De Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873 (1997).
[Crossref]

Alkilany, A. M.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Alu, A.

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[Crossref]

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

Alù, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Arnold, M. D.

M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18, 7528–7542 (2010).
[Crossref] [PubMed]

N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C 113, 2784–2791 (2009).
[Crossref]

Auguié, B.

E. C. Le Ru, W. R. Somerville, and B. Auguié, “Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers,” Phys. Rev. A 87, 012504 (2013).
[Crossref]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1, 228–234 (2014).
[Crossref]

Badenes, G.

P. Ghenuche, I. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, “Cavity resonances in finite plasmonic chains,” Appl. Phys. Lett. 90, 041109 (2007).
[Crossref]

Barazzouk, S.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B 108, 13066–13068 (2004).
[Crossref]

Barrow, S. J.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

Bar-Sadan, M.

L. Chuntonov, M. Bar-Sadan, L. Houben, and G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles,” Nano Lett. 12, 145–150 (2011).
[Crossref]

Baumberg, J.

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

Baumberg, J. J.

R. W. Taylor, R. Esteban, S. Mahajan, J. Aizpurua, and J. J. Baumberg, “Optimizing sers from gold nanoparticle clusters: Addressing the near field by an embedded chain plasmon model,” J. Phys. Chem. C 120, 10512–10522 (2016).
[Crossref]

F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
[Crossref]

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

Benz, F.

F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
[Crossref]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

Bieber, V.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357 (1999).
[Crossref]

Blaber, M. G.

M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18, 7528–7542 (2010).
[Crossref] [PubMed]

N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C 113, 2784–2791 (2009).
[Crossref]

Bomans, P. H.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

Borghese, F.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Borisov, A. G.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357 (1999).
[Crossref]

Botet, R.

V. M. Shalaev, R. Botet, D. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[Crossref]

Boulos, S. P.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Bozhevolnyi, S.

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75, 073402 (2007).
[Crossref]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Bryant, G. W.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1, 228–234 (2014).
[Crossref]

Chanana, M.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

Chang, S.-H. G.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

Chang, W.-S.

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[Crossref] [PubMed]

Chen, P.

M. Zhu, P. Chen, W. Ma, B. Lei, and M. Liu, “Template-free synthesis of cube-like ag/agcl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts,” ACS Appl. Mater. Interfaces 4, 6386–6392 (2012).
[Crossref] [PubMed]

Chen, T.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Cheng, F.-Y.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

Cheng, Y.-S.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

Chernak, D. J.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Chester, M. H.

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[Crossref] [PubMed]

Chikkaraddy, R.

Choi, J.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

Choueiri, R. M.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Chuntonov, L.

L. Chuntonov, M. Bar-Sadan, L. Houben, and G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles,” Nano Lett. 12, 145–150 (2011).
[Crossref]

Citrin, D.

D. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5, 985–989 (2005).
[Crossref] [PubMed]

Conway, J.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Phot. Nano. Fund. Appl. 10, 166–176 (2012).
[Crossref]

Cormack, I.

P. Ghenuche, I. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, “Cavity resonances in finite plasmonic chains,” Appl. Phys. Lett. 90, 041109 (2007).
[Crossref]

Coulston, R.

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

Cushman, B.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Davis, T. J.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

de Abajo, F. G.

F. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

de Nijs, B.

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

Denti, P.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Dmitriev, A.

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[Crossref] [PubMed]

Dominguez-Medina, S.

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Dujardin, E.

C. Girard, E. Dujardin, M. Li, and S. Mann, “Theoretical near-field optical properties of branched plasmonic nanoparticle networks,” Phys. Rev. Lett. 97, 100801 (2006).
[Crossref] [PubMed]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[Crossref]

Edwardson, S.

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Engheta, N.

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[Crossref]

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

Erickson, K. J.

Y. Kang, K. J. Erickson, and T. A. Taton, “Plasmonic nanoparticle chains via a morphological, sphere-to-string transition,” J. Am. Chem. Soc. 127, 13800–13801 (2005).
[Crossref] [PubMed]

Esteban, R.

R. W. Taylor, R. Esteban, S. Mahajan, J. Aizpurua, and J. J. Baumberg, “Optimizing sers from gold nanoparticle clusters: Addressing the near field by an embedded chain plasmon model,” J. Phys. Chem. C 120, 10512–10522 (2016).
[Crossref]

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Evans, S. D.

F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
[Crossref]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

Feizpour, A.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Fery, A.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

Ford, M. J.

M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18, 7528–7542 (2010).
[Crossref] [PubMed]

N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C 113, 2784–2791 (2009).
[Crossref]

Funston, A. M.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

Furst, E. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref] [PubMed]

Gagnon, B.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Gang, O.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

García De Abajo, F. J.

George, T. F.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486 (1994).
[Crossref] [PubMed]

Ghenuche, P.

P. Ghenuche, I. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, “Cavity resonances in finite plasmonic chains,” Appl. Phys. Lett. 90, 041109 (2007).
[Crossref]

Girard, C.

C. Girard, E. Dujardin, M. Li, and S. Mann, “Theoretical near-field optical properties of branched plasmonic nanoparticle networks,” Phys. Rev. Lett. 97, 100801 (2006).
[Crossref] [PubMed]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[Crossref]

Gómez, D. E.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

Grzelczak, M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref] [PubMed]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref] [PubMed]

Guo, W.

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Hanske, C.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

Haran, G.

L. Chuntonov, M. Bar-Sadan, L. Houben, and G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles,” Nano Lett. 12, 145–150 (2011).
[Crossref]

Harris, N.

M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18, 7528–7542 (2010).
[Crossref] [PubMed]

N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C 113, 2784–2791 (2009).
[Crossref]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Herrmann, L.

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

Herrmann, L. O.

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

Hillenbrand, R.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

Houben, L.

L. Chuntonov, M. Bar-Sadan, L. Houben, and G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles,” Nano Lett. 12, 145–150 (2011).
[Crossref]

Howie, A.

F. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

Huang, J.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Huck, C.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

Ipe, B. I.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B 108, 13066–13068 (2004).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Jones, S. T.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

Joseph, S. S.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B 108, 13066–13068 (2004).
[Crossref]

Joshi, B. P.

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357 (1999).
[Crossref]

Kamat, P. V.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B 108, 13066–13068 (2004).
[Crossref]

Kang, Y.

Y. Kang, K. J. Erickson, and T. A. Taton, “Plasmonic nanoparticle chains via a morphological, sphere-to-string transition,” J. Am. Chem. Soc. 127, 13800–13801 (2005).
[Crossref] [PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Kern, K.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Kim, P. Y.

P. Y. Kim, J.-W. Oh, and J.-M. Nam, “Controlled co-assembly of nanoparticles and polymer into ultralong and continuous one-dimensional nanochains,” J. Am. Chem. Soc. 137, 8030–8033 (2015).
[Crossref] [PubMed]

Kim, S.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, S.-W.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.-J.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kling, M. F.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

Klinkova, A.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[Crossref]

König, T. A.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

Kovacs, J.

V. M. Shalaev, R. Botet, D. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[Crossref]

Kumacheva, E.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Kuttner, C.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

Lebedev, V.

Lederer, F.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Lee, D.-H.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

Lee, T.-C.

T.-C. Lee and O. A. Scherman, “Formation of dynamic aggregates in water by cucurbit [5] uril capped with gold nanoparticles,” Chem. Commun. 46, 2438–2440 (2010).
[Crossref]

Lei, B.

M. Zhu, P. Chen, W. Ma, B. Lei, and M. Liu, “Template-free synthesis of cube-like ag/agcl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts,” ACS Appl. Mater. Interfaces 4, 6386–6392 (2012).
[Crossref] [PubMed]

Li, L.

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

Li, M.

C. Girard, E. Dujardin, M. Li, and S. Mann, “Theoretical near-field optical properties of branched plasmonic nanoparticle networks,” Phys. Rev. Lett. 97, 100801 (2006).
[Crossref] [PubMed]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[Crossref]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1, 228–234 (2014).
[Crossref]

Lin, S.

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[Crossref]

Link, S.

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[Crossref] [PubMed]

Liu, M.

M. Zhu, P. Chen, W. Ma, B. Lei, and M. Liu, “Template-free synthesis of cube-like ag/agcl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts,” ACS Appl. Mater. Interfaces 4, 6386–6392 (2012).
[Crossref] [PubMed]

Liu, Z.

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

Liz-Marzán, L. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref] [PubMed]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref] [PubMed]

Loza-Alvarez, P.

P. Ghenuche, I. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, “Cavity resonances in finite plasmonic chains,” Appl. Phys. Lett. 90, 041109 (2007).
[Crossref]

Luk’yanchuk, B.

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Ma, W.

M. Zhu, P. Chen, W. Ma, B. Lei, and M. Liu, “Template-free synthesis of cube-like ag/agcl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts,” ACS Appl. Mater. Interfaces 4, 6386–6392 (2012).
[Crossref] [PubMed]

Mahajan, S.

R. W. Taylor, R. Esteban, S. Mahajan, J. Aizpurua, and J. J. Baumberg, “Optimizing sers from gold nanoparticle clusters: Addressing the near field by an embedded chain plasmon model,” J. Phys. Chem. C 120, 10512–10522 (2016).
[Crossref]

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

Mann, S.

C. Girard, E. Dujardin, M. Li, and S. Mann, “Theoretical near-field optical properties of branched plasmonic nanoparticle networks,” Phys. Rev. Lett. 97, 100801 (2006).
[Crossref] [PubMed]

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[Crossref]

Martin, O.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Mertens, J.

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

Moskovits, M.

V. M. Shalaev, R. Botet, D. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Mulvaney, P.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref] [PubMed]

Muntyanu, A.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Muratov, L. S.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486 (1994).
[Crossref] [PubMed]

Murphy, C. J.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Nam, J.-M.

P. Y. Kim, J.-W. Oh, and J.-M. Nam, “Controlled co-assembly of nanoparticles and polymer into ultralong and continuous one-dimensional nanochains,” J. Am. Chem. Soc. 137, 8030–8033 (2015).
[Crossref] [PubMed]

Neubrech, F.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

Neuman, T.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

Nijs, B. De

Nordlander, P.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

Nykypanchuk, D.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Ogden, N.

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[Crossref] [PubMed]

Oh, J.-W.

P. Y. Kim, J.-W. Oh, and J.-M. Nam, “Controlled co-assembly of nanoparticles and polymer into ultralong and continuous one-dimensional nanochains,” J. Am. Chem. Soc. 137, 8030–8033 (2015).
[Crossref] [PubMed]

Olson, J. M.

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

Ortiz, N.

N. Ortiz and S. E. Skrabalak, “On the dual roles of ligands in the synthesis of colloidal metal nanostructures,” Langmuir 30, 6649–6659 (2014).
[Crossref] [PubMed]

Pandey, L. N.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486 (1994).
[Crossref] [PubMed]

Park, I.-Y.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Pérez-Juste, J.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref] [PubMed]

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Pohl, D.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Polman, A.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[Crossref]

Pourmand, M.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004).
[Crossref] [PubMed]

Pucci, A.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

Pukenas, L.

F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
[Crossref]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

Quidant, R.

P. Ghenuche, I. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, “Cavity resonances in finite plasmonic chains,” Appl. Phys. Lett. 90, 041109 (2007).
[Crossref]

Reinhard, B. M.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Ridolfo, A.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Romero, I.

Ru, E. C. Le

E. C. Le Ru, W. R. Somerville, and B. Auguié, “Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers,” Phys. Rev. A 87, 012504 (2013).
[Crossref]

Saija, R.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

Sanders, A.

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

Savasta, S.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Scherman, O. A.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

T.-C. Lee and O. A. Scherman, “Formation of dynamic aggregates in water by cucurbit [5] uril capped with gold nanoparticles,” Chem. Commun. 46, 2438–2440 (2010).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev, R. Botet, D. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[Crossref]

Shanmugam, V.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

Sigle, D.

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

Sigle, D. O.

F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
[Crossref]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

Sisco, P. N.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Sivapalan, S. T.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Skrabalak, S. E.

N. Ortiz and S. E. Skrabalak, “On the dual roles of ligands in the synthesis of colloidal metal nanostructures,” Langmuir 30, 6649–6659 (2014).
[Crossref] [PubMed]

Slaughter, L. S.

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[Crossref] [PubMed]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

Somerville, W. R.

E. C. Le Ru, W. R. Somerville, and B. Auguié, “Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers,” Phys. Rev. A 87, 012504 (2013).
[Crossref]

Sommerdijk, N. A.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

Søndergaard, T.

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75, 073402 (2007).
[Crossref]

Staffaroni, M.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Phot. Nano. Fund. Appl. 10, 166–176 (2012).
[Crossref]

Stefano, O. Di

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Stockman, M. I.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486 (1994).
[Crossref] [PubMed]

Su, C.-H.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

Swanglap, P.

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

Tang, J.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Phot. Nano. Fund. Appl. 10, 166–176 (2012).
[Crossref]

Taton, T. A.

Y. Kang, K. J. Erickson, and T. A. Taton, “Plasmonic nanoparticle chains via a morphological, sphere-to-string transition,” J. Am. Chem. Soc. 127, 13800–13801 (2005).
[Crossref] [PubMed]

Taylor, R. W.

R. W. Taylor, R. Esteban, S. Mahajan, J. Aizpurua, and J. J. Baumberg, “Optimizing sers from gold nanoparticle clusters: Addressing the near field by an embedded chain plasmon model,” J. Phys. Chem. C 120, 10512–10522 (2016).
[Crossref]

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

Tebbe, M.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

Teperik, T. V.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

Thérien-Aubin, H.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Thomas, K. G.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B 108, 13066–13068 (2004).
[Crossref]

Thompson, L. B.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Tsai, D.

V. M. Shalaev, R. Botet, D. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[Crossref]

Tsai, M.-F.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

Tserkezis, C.

F. Benz, B. De Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23, 33255–33269 (2015).
[Crossref]

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

Tsukruk, V. V.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Vedantam, S.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Phot. Nano. Fund. Appl. 10, 166–176 (2012).
[Crossref]

Vergeles, S.

Vermant, J.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref] [PubMed]

Vogelgesang, R.

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Vogt, J.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

Vorobev, P.

Walker, G. C.

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

Wang, L.-Y.

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

Wang, Y. M.

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

Wang, Z.

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

Watkins, K.

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

Wei, Q.-H.

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Whitehead, D.

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

Willingham, B. A.

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[Crossref] [PubMed]

Xu, H.

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in ters configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357 (1999).
[Crossref]

Yablonovitch, E.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Phot. Nano. Fund. Appl. 10, 166–176 (2012).
[Crossref]

Yang, J. A.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

Yang, Z.

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in ters configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

Yeh, C.-S.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Zhu, M.

M. Zhu, P. Chen, W. Ma, B. Lei, and M. Liu, “Template-free synthesis of cube-like ag/agcl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts,” ACS Appl. Mater. Interfaces 4, 6386–6392 (2012).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

M. Zhu, P. Chen, W. Ma, B. Lei, and M. Liu, “Template-free synthesis of cube-like ag/agcl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts,” ACS Appl. Mater. Interfaces 4, 6386–6392 (2012).
[Crossref] [PubMed]

ACS Nano (3)

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[Crossref] [PubMed]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330–5342 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1, 228–234 (2014).
[Crossref]

R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, and J. Aizpurua, “The morphology of narrow gaps modifies the plasmonic response,” ACS Photonics 2, 295–305 (2015).
[Crossref]

Adv. Mater. (1)

S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[Crossref]

Analyst (1)

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Ghenuche, I. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, “Cavity resonances in finite plasmonic chains,” Appl. Phys. Lett. 90, 041109 (2007).
[Crossref]

Chem. Commun. (1)

T.-C. Lee and O. A. Scherman, “Formation of dynamic aggregates in water by cucurbit [5] uril capped with gold nanoparticles,” Chem. Commun. 46, 2438–2440 (2010).
[Crossref]

Chem. Soc. Rev. (1)

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

Y. Kang, K. J. Erickson, and T. A. Taton, “Plasmonic nanoparticle chains via a morphological, sphere-to-string transition,” J. Am. Chem. Soc. 127, 13800–13801 (2005).
[Crossref] [PubMed]

P. Y. Kim, J.-W. Oh, and J.-M. Nam, “Controlled co-assembly of nanoparticles and polymer into ultralong and continuous one-dimensional nanochains,” J. Am. Chem. Soc. 137, 8030–8033 (2015).
[Crossref] [PubMed]

J. Chem. Phys. (2)

Z. Wang, B. Luk’yanchuk, W. Guo, S. Edwardson, D. Whitehead, L. Li, Z. Liu, and K. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
[Crossref] [PubMed]

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B 108, 13066–13068 (2004).
[Crossref]

J. Phys. Chem. C (4)

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas,” J. Phys. Chem. C 119, 26652–26662 (2015).
[Crossref]

N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C 113, 2784–2791 (2009).
[Crossref]

R. W. Taylor, R. Esteban, S. Mahajan, R. Coulston, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Simple composite dipole model for the optical modes of strongly-coupled plasmonic nanoparticle aggregates,” J. Phys. Chem. C 116, 25044–25051 (2012).
[Crossref]

R. W. Taylor, R. Esteban, S. Mahajan, J. Aizpurua, and J. J. Baumberg, “Optimizing sers from gold nanoparticle clusters: Addressing the near field by an embedded chain plasmon model,” J. Phys. Chem. C 120, 10512–10522 (2016).
[Crossref]

J. Phys. Chem. Lett. (2)

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref] [PubMed]

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1, 2867–2875 (2010).
[Crossref]

J. Raman Spectrosc. (1)

Z. Yang, J. Aizpurua, and H. Xu, “Electromagnetic field enhancement in ters configurations,” J. Raman Spectrosc. 40, 1343–1348 (2009).
[Crossref]

Langmuir (2)

N. Ortiz and S. E. Skrabalak, “On the dual roles of ligands in the synthesis of colloidal metal nanostructures,” Langmuir 30, 6649–6659 (2014).
[Crossref] [PubMed]

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Nano Lett. (9)

D. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5, 985–989 (2005).
[Crossref] [PubMed]

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[Crossref] [PubMed]

L. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, and S. Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

A. Klinkova, H. Thérien-Aubin, A. Ahmed, D. Nykypanchuk, R. M. Choueiri, B. Gagnon, A. Muntyanu, O. Gang, G. C. Walker, and E. Kumacheva, “Structural and optical properties of self-assembled chains of plasmonic nanocubes,” Nano Lett. 14, 6314–6321 (2014).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15, 669–674 (2014).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. König, and A. Fery, “Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly,” Nano Lett. 14, 6863–6871 (2014).
[Crossref] [PubMed]

L. Chuntonov, M. Bar-Sadan, L. Houben, and G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles,” Nano Lett. 12, 145–150 (2011).
[Crossref]

Nanoscale (1)

L. S. Slaughter, L.-Y. Wang, B. A. Willingham, J. M. Olson, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmonic polymers unraveled through single particle spectroscopy,” Nanoscale 6, 11451–11461 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref] [PubMed]

Nat. Photon. (2)

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photon. 5, 677–681 (2011).
[Crossref]

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[Crossref]

Nature (1)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phot. Nano. Fund. Appl. (1)

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Phot. Nano. Fund. Appl. 10, 166–176 (2012).
[Crossref]

Phys. Rev. A (2)

C. Tserkezis, R. Esteban, D. Sigle, J. Mertens, L. Herrmann, J. Baumberg, and J. Aizpurua, “Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps,” Phys. Rev. A 92, 053811 (2015).
[Crossref]

E. C. Le Ru, W. R. Somerville, and B. Auguié, “Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers,” Phys. Rev. A 87, 012504 (2013).
[Crossref]

Phys. Rev. B (7)

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75, 073402 (2007).
[Crossref]

F. G. De Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56, 15873 (1997).
[Crossref]

F. G. de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
[Crossref]

Phys. Rev. Lett. (6)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357 (1999).
[Crossref]

C. Girard, E. Dujardin, M. Li, and S. Mann, “Theoretical near-field optical properties of branched plasmonic nanoparticle networks,” Phys. Rev. Lett. 97, 100801 (2006).
[Crossref] [PubMed]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486 (1994).
[Crossref] [PubMed]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[Crossref] [PubMed]

Physica A (1)

V. M. Shalaev, R. Botet, D. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[Crossref]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Small (1)

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit [n] uril for sers applications,” Small 10, 4298–4303 (2014).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of aggregates of a) spheres and c) flat-faceted particles under plain wave illumination with electric field E . The incoming illumination mainly excites longitudinal plasmon modes in chains that extend along the polarization direction (chains delimited in the scheme by thick blue or red lines). We thus focus on the optical response of chains of b) spheres or d) flat-faceted particles. Zooms in b) and d) illustrate the dimensions of the particles composing the chains. In both cases the particles are rotationally symmetric with respect to the chain axis. We notice that the complex flat-faceted aggregates in c) would require breaking the rotational symmetry to have more than 2 flat facets per particle. The spheres (b) are defined by their diameter D = 50 nm. The flat-faceted particles (d) are rods defined by 3 parameters, the length L (in the direction along the chain axis), the diameter D (in the orthogonal direction) and the facet diameter Df. r e d g e = D D f 2 is the radius of the edges of the particles. We fix L = D = 50 nm and we vary Df from Df = 0 nm, corresponding to a sphere, to Df = 46 nm, a cylindrical rod with almost completely flat facets. In Figs. 46 the fields are evaluated in the central plane of the gaps, in an area corresponding to a circle of radius 25 nm. We mark this region for one gap in the insets of b) and d) as the region of the central red plane delimited by the dashed circular line. e) Calculated extinction spectrum of a chain of Np = 10 spheres in blue and a chain of 10 flat-faceted particles with Df = 46 nm in red for incident light with the electric field polarized along the chain direction. All the structures considered in this study are cylindrically symmetric.

Fig. 2
Fig. 2

a),b) Waterfall plot of the normalized extinction cross-section calculated as a function of wavelength for a chain of Au particles for a) Df = 0 nm (spheres) and b) rods with Df = 46 nm facets for increasing number of particles Np = 1 − 16. Shorter chains are plotted at the bottom. All the structures considered in this study are cylindrically symmetric, and the different spectra are shifted vertically for clarity.

Fig. 3
Fig. 3

a) Spectral position of the lowest-energy longitudinal chain plasmon (λLCP) calculated as a function of the number of particles in the chain Np, for different diameters Df of the flat facet forming the gaps (top to bottom, Df =46 nm, 34 nm, 24 nm, 14 nm, 0 nm). The different colours in the plot indicate the corresponding structure in the central panel (recall that the particles are cylindrically symmetric). The calculated values (dots) are fitted to an exponential function (solid lines). We also show the results for a rod of length Np · L (an orange dashed line). c) Parameters of the exponential fit for each facet diameter corresponding to the saturation wavelength λ L C P s a t (red, right axis) and the decay length Ldec (blue, left axis). Dots are the calculated values while lines are a linear fit.

Fig. 4
Fig. 4

a),b) Waterfall plot of the maximum near-field enhancement at the gaps of a chain of Au particles with a) Df = 0 nm and b) Df = 46 nm facets calculated as a function of wavelength and number of particles Np = 2 − 16. Shorter chains are plotted at the bottom. In b) black dashed lines track the position of the LCP resonances while blue lines correspond to the position of the TCPs. All the structures considered in this study are cylindrically symmetric, and the different spectra are shifted vertically for clarity.

Fig. 5
Fig. 5

a) Maximum near-field enhancement |ELCP/E0|max of the lowest-energy longitudinal chain plasmon (LCP) calculated as a function of the number of particles in the chain Np, for different diameters Df (bottom to top, Df = 46nm, 34nm, 24nm, 14nm, 0nm). b) Average near-field enhancement |ELCP/E0|avr of the lowest-energy longitudinal chain plasmon (LCP) as a function of the number of particles in the chain Np, for the same diameters Df as in Fig 3. The different colours in the plot indicate the structure under study, as given by the schematics in the central panel of the figure. All particles are cylindrically symmetric.

Fig. 6
Fig. 6

Near-field maps of the LCP mode calculated near the central gap of a chain formed by Np = 8 particles with faceted diameter a) Df = 46 nm, b) Df = 34 nm, c) Df = 24 nm, d) Df = 14 nm and e) Df = 0 nm. f) The dots and solid line show the LCP normalized mode area A N as a function of facet diameter Df. The dashed line indicate the normalized area D f 2 / D 2 for each structure considered. All the structures considered in this study are cylindrically symmetric.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ L C P = λ L C P s a t β e N p / L d e c
A N = 1 π ( D / 2 ) 2 S | E ( r ) | 2 | E m a x | 2 d S

Metrics