Abstract

A luminescent concentrator functioning as a bright source of yellow light is reported. It comprises a waveguide made of cerium-doped YAG crystal, in the form of a long-thin rectangular strip, surrounded by flowing air and optically pumped from both sides with blue light from arrays of high-efficiency InGaN LEDs. Phosphor-converted yellow light, generated within the strip, is guided to a glass taper that is butt-coupled to one of the strip’s end faces. Up to 20 W of optical power, centered on 575 nm with a linewidth of 76 nm, can be continuously radiated into air from the taper’s 1.67 mm × 1.67 mm square output aperture. The intensity of the outputted light is significantly greater than what any yellow (AlGaInP) LED can directly produce (either singly or arrayed), with only a modest increase in linewidth. Furthermore, the wall-plug efficiency of the source exceeds that of any yellow laser. The concept allows for further substantial increases in intensity, total output power and wall-plug efficiency through scaling-up and engineering refinements.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-brightness source based on luminescent concentration

Dick K. G. de Boer, Dominique Bruls, and Henri Jagt
Opt. Express 24(14) A1069-A1074 (2016)

Enhancing brightness of Lambertian light sources with luminescent concentrators: the light extraction issue

T. Gallinelli, A. Barbet, F. Druon, F. Balembois, P. Georges, T. Billeton, S. Chenais, and S. Forget
Opt. Express 27(8) 11830-11843 (2019)

Efficient all solid-state continuous-wave yellow-orange light source

Jirí Janousek, Sandra Johansson, Peter Tidemand-Lichtenberg, Shunhua Wang, Jesper L. Mortensen, Preben Buchhave, and Fredrik Laurell
Opt. Express 13(4) 1188-1192 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Philips, “MASTER SOX-E PSG 36W BY22d T501SL/12,” http://www.lighting.philips.com/main/prof/lamps/high-intensity-discharge-lamps/sox-low-pressure-sodium/master-sox-e-psg/928148200058_EU/product .
  2. E. Technologies, “PE300C-10F Cermax Xenon Short Arc Ceramic Body Elliptical Lamp,” http://www.excelitas.com/Lists/Cermax%20Lamps/DispForm.ggfgaspx?ID=1 .
  3. Philips Lumileds Lighting Company, “LXZ1-PL01,” http://www.leds.de/out/media/64117_farbige_Luxeon_Z_DS105(1). pdf .
  4. M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
    [Crossref]
  5. T. Omi, S. Kawana, S. Sato, and M. Honda, “Ultrastructural changes elicited by a non-ablative wrinkle reduction laser,” Lasers Surg. Med. 32(1), 46–49 (2003).
    [Crossref] [PubMed]
  6. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
    [Crossref]
  7. W. G. J. H. M. van Sark, “Luminescent solar concentrators – A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
    [Crossref]
  8. Y. Yang, I. D. W. Samuel, and G. A. Turnbull, “The development of luminescent concentrators for pumping organic semiconductor lasers,” Adv. Mater. 21(31), 3205–3209 (2009).
    [Crossref]
  9. A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J. P. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: a new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
    [Crossref]
  10. G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
    [Crossref]
  11. G. Colantuono, A. Buckley, and R. Erdelyi, “Ray-Optics Modelling of Rectangular and Cylindrical 2-Layer Solar Concentrators,” J. Lightwave Technol. 31(7), 1033–1044 (2013).
    [Crossref]
  12. L. R. Wilson, “Luminescent solar concentrators: a study of optical properties, re-absorption and device optimisation,” Thesis, Heriot-Watt University (2010).
  13. V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
    [Crossref]
  14. X. Yang, H. Li, Q. Bi, L. Su, and J. Xu, “Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by the temperature gradient technique (TGT),” J. Cryst. Growth 311(14), 3692–3696 (2009).
    [Crossref]
  15. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. G. Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce 3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express 2(8), 1111–1120 (2012).
    [Crossref]
  16. S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing,” Cryst. Res. Technol. 34(8), 1031–1036 (1999).
    [Crossref]
  17. A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators: a review,” Sol. Cells 4(1), 3–23 (1981).
    [Crossref]
  18. M. Khoshakhlagh, J. P. Islamian, S. M. Abedi, and B. Mahmoudian, “Development of scintillators in nuclear medicine,” World J. Nucl. Med. 14(3), 156–159 (2015).
    [Crossref] [PubMed]
  19. C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D Appl. Phys. 45(1), 015103 (2012).
    [Crossref]
  20. J. Mares, B. Jacquier, C. Pedrini, and G. Boulon, “Energy transfer mechanisms between Ce3+ and Nd3+ in YAG:Nd, Ce at low temperature,” Rev. Phys. Appl. (Paris) 22(2), 145–152 (1987).
    [Crossref]
  21. S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
    [Crossref]
  22. Y. Kawamura, H. Sasabe, and C. Adachi, “Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films,” Jpn. J. Appl. Phys. 43, 7729–7730 (2004).
    [Crossref]
  23. L.-O. Pålsson and A. P. Monkman, “Measurements of solid-state photoluminescence quantum yields of films using a fluorimeter,” Adv. Mater. 14(10), 757 (2002).
    [Crossref]
  24. C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rotschild, and M. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A79–A90 (2010).
    [Crossref]
  25. T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
    [Crossref] [PubMed]
  26. L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
    [Crossref] [PubMed]
  27. T. Smith and J. Guild, “The CIE colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
    [Crossref]
  28. M.R Wernand and H. J. Van der Woerd, “Spectral analysis of the Forel-Ule Ocean colour comparator scale,” J. Eur. Opt. Soc, Rapid Publ. 5, 10014 (2010).
  29. W. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. A 39(11), 912–916 (1949).
    [Crossref]
  30. S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
    [Crossref]
  31. J. Sansregret, J. M. Drake, W. R. Thomas, and M. L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22(4), 573–577 (1983).
    [Crossref] [PubMed]
  32. J. L. Banal, J. M. White, K. P. Ghiggino, and W. W. Wong, “Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle,” Sci. Rep. 4(1), 4635 (2014).
    [Crossref] [PubMed]
  33. P. P. Verbunt and M. G. Debije, “ Progress in luminescent solar concentrator research: solar energy for the built environment,” inWorld Renewable Energy Congress (2011), pp. 2751–2758.
    [Crossref]
  34. J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
[Crossref] [PubMed]

S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
[Crossref]

M. Khoshakhlagh, J. P. Islamian, S. M. Abedi, and B. Mahmoudian, “Development of scintillators in nuclear medicine,” World J. Nucl. Med. 14(3), 156–159 (2015).
[Crossref] [PubMed]

2014 (2)

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

J. L. Banal, J. M. White, K. P. Ghiggino, and W. W. Wong, “Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle,” Sci. Rep. 4(1), 4635 (2014).
[Crossref] [PubMed]

2013 (2)

G. Colantuono, A. Buckley, and R. Erdelyi, “Ray-Optics Modelling of Rectangular and Cylindrical 2-Layer Solar Concentrators,” J. Lightwave Technol. 31(7), 1033–1044 (2013).
[Crossref]

W. G. J. H. M. van Sark, “Luminescent solar concentrators – A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

2012 (2)

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D Appl. Phys. 45(1), 015103 (2012).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. G. Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce 3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express 2(8), 1111–1120 (2012).
[Crossref]

2010 (3)

2009 (3)

Y. Yang, I. D. W. Samuel, and G. A. Turnbull, “The development of luminescent concentrators for pumping organic semiconductor lasers,” Adv. Mater. 21(31), 3205–3209 (2009).
[Crossref]

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

X. Yang, H. Li, Q. Bi, L. Su, and J. Xu, “Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by the temperature gradient technique (TGT),” J. Cryst. Growth 311(14), 3692–3696 (2009).
[Crossref]

2008 (1)

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[Crossref]

2007 (1)

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

2004 (1)

Y. Kawamura, H. Sasabe, and C. Adachi, “Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films,” Jpn. J. Appl. Phys. 43, 7729–7730 (2004).
[Crossref]

2003 (1)

T. Omi, S. Kawana, S. Sato, and M. Honda, “Ultrastructural changes elicited by a non-ablative wrinkle reduction laser,” Lasers Surg. Med. 32(1), 46–49 (2003).
[Crossref] [PubMed]

2002 (1)

L.-O. Pålsson and A. P. Monkman, “Measurements of solid-state photoluminescence quantum yields of films using a fluorimeter,” Adv. Mater. 14(10), 757 (2002).
[Crossref]

1999 (1)

S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing,” Cryst. Res. Technol. 34(8), 1031–1036 (1999).
[Crossref]

1992 (1)

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

1987 (1)

J. Mares, B. Jacquier, C. Pedrini, and G. Boulon, “Energy transfer mechanisms between Ce3+ and Nd3+ in YAG:Nd, Ce at low temperature,” Rev. Phys. Appl. (Paris) 22(2), 145–152 (1987).
[Crossref]

1983 (1)

1981 (1)

A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators: a review,” Sol. Cells 4(1), 3–23 (1981).
[Crossref]

1949 (1)

W. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. A 39(11), 912–916 (1949).
[Crossref]

1931 (1)

T. Smith and J. Guild, “The CIE colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
[Crossref]

Abedi, S. M.

M. Khoshakhlagh, J. P. Islamian, S. M. Abedi, and B. Mahmoudian, “Development of scintillators in nuclear medicine,” World J. Nucl. Med. 14(3), 156–159 (2015).
[Crossref] [PubMed]

Adachi, C.

Y. Kawamura, H. Sasabe, and C. Adachi, “Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films,” Jpn. J. Appl. Phys. 43, 7729–7730 (2004).
[Crossref]

Ahn, T.-S.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Alford, N. M.

J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
[Crossref] [PubMed]

Al-Kaysi, R. O.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Aoki, K.

S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
[Crossref]

Arjoca, S.

S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
[Crossref]

Atoyan, G. S.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Bachmann, V.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

Baldo, M.

Balembois, F.

Banal, J. L.

J. L. Banal, J. M. White, K. P. Ghiggino, and W. W. Wong, “Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle,” Sci. Rep. 4(1), 4635 (2014).
[Crossref] [PubMed]

Barbet, A.

Bardeen, C. J.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Bi, Q.

X. Yang, H. Li, Q. Bi, L. Su, and J. Xu, “Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by the temperature gradient technique (TGT),” J. Cryst. Growth 311(14), 3692–3696 (2009).
[Crossref]

Blanchot, J. P.

Boulon, G.

J. Mares, B. Jacquier, C. Pedrini, and G. Boulon, “Energy transfer mechanisms between Ce3+ and Nd3+ in YAG:Nd, Ce at low temperature,” Rev. Phys. Appl. (Paris) 22(2), 145–152 (1987).
[Crossref]

Breeze, J.

J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
[Crossref] [PubMed]

Bruls, D.

S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Buckley, A.

Chénais, S.

Clements, W. R.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Colantuono, G.

de Boer, D. K.

S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Debije, M. G.

P. P. Verbunt and M. G. Debije, “ Progress in luminescent solar concentrator research: solar energy for the built environment,” inWorld Renewable Energy Congress (2011), pp. 2751–2758.
[Crossref]

Domianiak-Dzik, G.

S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing,” Cryst. Res. Technol. 34(8), 1031–1036 (1999).
[Crossref]

Drake, J. M.

Druon, F.

Enderlein, M.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Erdelyi, R.

Ernstberger, B.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Forget, S.

Friedenauer, A.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Gallinelli, T.

Georges, P.

Ghiggino, K. P.

J. L. Banal, J. M. White, K. P. Ghiggino, and W. W. Wong, “Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle,” Sci. Rep. 4(1), 4635 (2014).
[Crossref] [PubMed]

Gladyshev, V. A.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Gninenko, S. N.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Goetzberger, A.

A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators: a review,” Sol. Cells 4(1), 3–23 (1981).
[Crossref]

Guild, J.

T. Smith and J. Guild, “The CIE colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
[Crossref]

Honda, M.

T. Omi, S. Kawana, S. Sato, and M. Honda, “Ultrastructural changes elicited by a non-ablative wrinkle reduction laser,” Lasers Surg. Med. 32(1), 46–49 (2003).
[Crossref] [PubMed]

Inomata, D.

S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
[Crossref]

Isakov, V. V.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Islamian, J. P.

M. Khoshakhlagh, J. P. Islamian, S. M. Abedi, and B. Mahmoudian, “Development of scintillators in nuclear medicine,” World J. Nucl. Med. 14(3), 156–159 (2015).
[Crossref] [PubMed]

Jacquier, B.

J. Mares, B. Jacquier, C. Pedrini, and G. Boulon, “Energy transfer mechanisms between Ce3+ and Nd3+ in YAG:Nd, Ce at low temperature,” Rev. Phys. Appl. (Paris) 22(2), 145–152 (1987).
[Crossref]

Jones, A. C.

Jones, R. C.

W. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. A 39(11), 912–916 (1949).
[Crossref]

Kaczmarek, S. M.

S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing,” Cryst. Res. Technol. 34(8), 1031–1036 (1999).
[Crossref]

Kaenders, W. G.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Karpov, V.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Kawamura, Y.

Y. Kawamura, H. Sasabe, and C. Adachi, “Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films,” Jpn. J. Appl. Phys. 43, 7729–7730 (2004).
[Crossref]

Kawana, S.

T. Omi, S. Kawana, S. Sato, and M. Honda, “Ultrastructural changes elicited by a non-ablative wrinkle reduction laser,” Lasers Surg. Med. 32(1), 46–49 (2003).
[Crossref] [PubMed]

Khoshakhlagh, M.

M. Khoshakhlagh, J. P. Islamian, S. M. Abedi, and B. Mahmoudian, “Development of scintillators in nuclear medicine,” World J. Nucl. Med. 14(3), 156–159 (2015).
[Crossref] [PubMed]

Kim, H.

Kisielewski, J.

S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing,” Cryst. Res. Technol. 34(8), 1031–1036 (1999).
[Crossref]

Koenderink, A. F.

Kovzelev, A. V.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Lapshin, V. G.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Leisching, P.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Lesiecki, M. L.

Li, H.

X. Yang, H. Li, Q. Bi, L. Su, and J. Xu, “Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by the temperature gradient technique (TGT),” J. Cryst. Growth 311(14), 3692–3696 (2009).
[Crossref]

Lozano, G.

Mackay, D.

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D Appl. Phys. 45(1), 015103 (2012).
[Crossref]

Mahmoudian, B.

M. Khoshakhlagh, J. P. Islamian, S. M. Abedi, and B. Mahmoudian, “Development of scintillators in nuclear medicine,” World J. Nucl. Med. 14(3), 156–159 (2015).
[Crossref] [PubMed]

Mares, J.

J. Mares, B. Jacquier, C. Pedrini, and G. Boulon, “Energy transfer mechanisms between Ce3+ and Nd3+ in YAG:Nd, Ce at low temperature,” Rev. Phys. Appl. (Paris) 22(2), 145–152 (1987).
[Crossref]

Meijerink, A.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

Meuret, Y.

S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Monich, E. A.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Monkman, A. P.

L.-O. Pålsson and A. P. Monkman, “Measurements of solid-state photoluminescence quantum yields of films using a fluorimeter,” Adv. Mater. 14(10), 757 (2002).
[Crossref]

Moudam, O.

Mulder, C. L.

Müller, A. M.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Murai, S.

Omi, T.

T. Omi, S. Kawana, S. Sato, and M. Honda, “Ultrastructural changes elicited by a non-ablative wrinkle reduction laser,” Lasers Surg. Med. 32(1), 46–49 (2003).
[Crossref] [PubMed]

Oxborrow, M.

J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
[Crossref] [PubMed]

Pålsson, L.-O.

L.-O. Pålsson and A. P. Monkman, “Measurements of solid-state photoluminescence quantum yields of films using a fluorimeter,” Adv. Mater. 14(10), 757 (2002).
[Crossref]

Paul, A.

Pedrini, C.

J. Mares, B. Jacquier, C. Pedrini, and G. Boulon, “Energy transfer mechanisms between Ce3+ and Nd3+ in YAG:Nd, Ce at low temperature,” Rev. Phys. Appl. (Paris) 22(2), 145–152 (1987).
[Crossref]

Pirruccio, G.

Poblaguev, A. A.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Proskuryakov, A. L.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Protopopov, Y. V.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Reda, S.

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D Appl. Phys. 45(1), 015103 (2012).
[Crossref]

Rehme, P.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Reusswig, P. D.

Richards, B.

J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
[Crossref] [PubMed]

Richards, B. S.

L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
[Crossref] [PubMed]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[Crossref]

Rivas, J. G.

Robertson, N.

Roelandt, S.

S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Ronda, C.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

Rotschild, C.

Rowan, B. C.

L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
[Crossref] [PubMed]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[Crossref]

Ryba-Romanowski, W.

S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing,” Cryst. Res. Technol. 34(8), 1031–1036 (1999).
[Crossref]

Rykalin, V. I.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Samuel, I. D. W.

Y. Yang, I. D. W. Samuel, and G. A. Turnbull, “The development of luminescent concentrators for pumping organic semiconductor lasers,” Adv. Mater. 21(31), 3205–3209 (2009).
[Crossref]

Sansregret, J.

Sasabe, H.

Y. Kawamura, H. Sasabe, and C. Adachi, “Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films,” Jpn. J. Appl. Phys. 43, 7729–7730 (2004).
[Crossref]

Sathian, J.

J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
[Crossref] [PubMed]

Sato, S.

T. Omi, S. Kawana, S. Sato, and M. Honda, “Ultrastructural changes elicited by a non-ablative wrinkle reduction laser,” Lasers Surg. Med. 32(1), 46–49 (2003).
[Crossref] [PubMed]

Schwerdt, R.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Selim, F.

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D Appl. Phys. 45(1), 015103 (2012).
[Crossref]

Semenov, V. K.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Semenyuk, I. N.

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Shimamura, K.

S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
[Crossref]

Shurcliff, W.

W. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. A 39(11), 912–916 (1949).
[Crossref]

Smith, T.

T. Smith and J. Guild, “The CIE colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
[Crossref]

Su, L.

X. Yang, H. Li, Q. Bi, L. Su, and J. Xu, “Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by the temperature gradient technique (TGT),” J. Cryst. Growth 311(14), 3692–3696 (2009).
[Crossref]

Sugahara, Y.

S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
[Crossref]

Tan, K.-J.

J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
[Crossref] [PubMed]

Thienpont, H.

S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Thomas, W. R.

Turnbull, G. A.

Y. Yang, I. D. W. Samuel, and G. A. Turnbull, “The development of luminescent concentrators for pumping organic semiconductor lasers,” Adv. Mater. 21(31), 3205–3209 (2009).
[Crossref]

Van De Voorde, P.

S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Van der Woerd, H. J.

M.R Wernand and H. J. Van der Woerd, “Spectral analysis of the Forel-Ule Ocean colour comparator scale,” J. Eur. Opt. Soc, Rapid Publ. 5, 10014 (2010).

van Sark, W. G. J. H. M.

W. G. J. H. M. van Sark, “Luminescent solar concentrators – A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

Varney, C.

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D Appl. Phys. 45(1), 015103 (2012).
[Crossref]

Velázquez, A. M.

Verbunt, P. P.

P. P. Verbunt and M. G. Debije, “ Progress in luminescent solar concentrator research: solar energy for the built environment,” inWorld Renewable Energy Congress (2011), pp. 2751–2758.
[Crossref]

Verschuuren, M. A.

Víllora, E. G.

S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
[Crossref]

Wei, D.

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Wentz, K. M.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Wernand, M.R

M.R Wernand and H. J. Van der Woerd, “Spectral analysis of the Forel-Ule Ocean colour comparator scale,” J. Eur. Opt. Soc, Rapid Publ. 5, 10014 (2010).

White, J. M.

J. L. Banal, J. M. White, K. P. Ghiggino, and W. W. Wong, “Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle,” Sci. Rep. 4(1), 4635 (2014).
[Crossref] [PubMed]

Wilson, L. R.

L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt. 49(9), 1651–1661 (2010).
[Crossref] [PubMed]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[Crossref]

Wittwer, V.

A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators: a review,” Sol. Cells 4(1), 3–23 (1981).
[Crossref]

Wojtkowska, J.

S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing,” Cryst. Res. Technol. 34(8), 1031–1036 (1999).
[Crossref]

Wong, W. W.

J. L. Banal, J. M. White, K. P. Ghiggino, and W. W. Wong, “Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle,” Sci. Rep. 4(1), 4635 (2014).
[Crossref] [PubMed]

Xu, J.

X. Yang, H. Li, Q. Bi, L. Su, and J. Xu, “Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by the temperature gradient technique (TGT),” J. Cryst. Growth 311(14), 3692–3696 (2009).
[Crossref]

Yang, X.

X. Yang, H. Li, Q. Bi, L. Su, and J. Xu, “Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by the temperature gradient technique (TGT),” J. Cryst. Growth 311(14), 3692–3696 (2009).
[Crossref]

Yang, Y.

Y. Yang, I. D. W. Samuel, and G. A. Turnbull, “The development of luminescent concentrators for pumping organic semiconductor lasers,” Adv. Mater. 21(31), 3205–3209 (2009).
[Crossref]

Adv. Mater. (2)

Y. Yang, I. D. W. Samuel, and G. A. Turnbull, “The development of luminescent concentrators for pumping organic semiconductor lasers,” Adv. Mater. 21(31), 3205–3209 (2009).
[Crossref]

L.-O. Pålsson and A. P. Monkman, “Measurements of solid-state photoluminescence quantum yields of films using a fluorimeter,” Adv. Mater. 14(10), 757 (2002).
[Crossref]

Appl. Opt. (2)

Chem. Mater. (1)

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

Cryst. Res. Technol. (1)

S. M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing,” Cryst. Res. Technol. 34(8), 1031–1036 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced Material Concepts for Luminescent Solar Concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[Crossref]

J. Cryst. Growth (1)

X. Yang, H. Li, Q. Bi, L. Su, and J. Xu, “Growth of large-sized Ce:Y3Al5O12 (Ce:YAG) scintillation crystal by the temperature gradient technique (TGT),” J. Cryst. Growth 311(14), 3692–3696 (2009).
[Crossref]

J. Eur. Opt. Soc, Rapid Publ. (1)

M.R Wernand and H. J. Van der Woerd, “Spectral analysis of the Forel-Ule Ocean colour comparator scale,” J. Eur. Opt. Soc, Rapid Publ. 5, 10014 (2010).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

W. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. A 39(11), 912–916 (1949).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D Appl. Phys. 45(1), 015103 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Kawamura, H. Sasabe, and C. Adachi, “Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films,” Jpn. J. Appl. Phys. 43, 7729–7730 (2004).
[Crossref]

Lasers Surg. Med. (1)

T. Omi, S. Kawana, S. Sato, and M. Honda, “Ultrastructural changes elicited by a non-ablative wrinkle reduction laser,” Lasers Surg. Med. 32(1), 46–49 (2003).
[Crossref] [PubMed]

Mater. Res. Express (1)

S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara, and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Mater. Res. Express 2(5), 055503 (2015).
[Crossref]

Nat. Commun. (1)

J. Breeze, K.-J. Tan, B. Richards, J. Sathian, M. Oxborrow, and N. M. Alford, “Enhanced magnetic Purcell effect in room-temperature masers,” Nat. Commun. 6, 6215 (2015).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

G. S. Atoyan, V. A. Gladyshev, S. N. Gninenko, V. V. Isakov, A. V. Kovzelev, E. A. Monich, A. A. Poblaguev, A. L. Proskuryakov, I. N. Semenyuk, V. G. Lapshin, Y. V. Protopopov, V. I. Rykalin, and V. K. Semenov, “Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout,” Nucl. Instrum. Methods Phys. Res. A 320(1-2), 144–154 (1992).
[Crossref]

Opt. Eng. (1)

S. Roelandt, Y. Meuret, D. K. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator,” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Optica (1)

Proc. SPIE (1)

M. Enderlein, A. Friedenauer, R. Schwerdt, P. Rehme, D. Wei, V. Karpov, B. Ernstberger, P. Leisching, W. R. Clements, and W. G. Kaenders, “Series production of next-generation guide-star lasers at TOPTICA and MPBC,” Proc. SPIE 9148, 914807 (2014).
[Crossref]

Renew. Energy (1)

W. G. J. H. M. van Sark, “Luminescent solar concentrators – A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

Rev. Phys. Appl. (Paris) (1)

J. Mares, B. Jacquier, C. Pedrini, and G. Boulon, “Energy transfer mechanisms between Ce3+ and Nd3+ in YAG:Nd, Ce at low temperature,” Rev. Phys. Appl. (Paris) 22(2), 145–152 (1987).
[Crossref]

Rev. Sci. Instrum. (1)

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78(8), 086105 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

J. L. Banal, J. M. White, K. P. Ghiggino, and W. W. Wong, “Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle,” Sci. Rep. 4(1), 4635 (2014).
[Crossref] [PubMed]

Sol. Cells (1)

A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators: a review,” Sol. Cells 4(1), 3–23 (1981).
[Crossref]

Trans. Opt. Soc. (1)

T. Smith and J. Guild, “The CIE colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
[Crossref]

World J. Nucl. Med. (1)

M. Khoshakhlagh, J. P. Islamian, S. M. Abedi, and B. Mahmoudian, “Development of scintillators in nuclear medicine,” World J. Nucl. Med. 14(3), 156–159 (2015).
[Crossref] [PubMed]

Other (5)

L. R. Wilson, “Luminescent solar concentrators: a study of optical properties, re-absorption and device optimisation,” Thesis, Heriot-Watt University (2010).

Philips, “MASTER SOX-E PSG 36W BY22d T501SL/12,” http://www.lighting.philips.com/main/prof/lamps/high-intensity-discharge-lamps/sox-low-pressure-sodium/master-sox-e-psg/928148200058_EU/product .

E. Technologies, “PE300C-10F Cermax Xenon Short Arc Ceramic Body Elliptical Lamp,” http://www.excelitas.com/Lists/Cermax%20Lamps/DispForm.ggfgaspx?ID=1 .

Philips Lumileds Lighting Company, “LXZ1-PL01,” http://www.leds.de/out/media/64117_farbige_Luxeon_Z_DS105(1). pdf .

P. P. Verbunt and M. G. Debije, “ Progress in luminescent solar concentrator research: solar energy for the built environment,” inWorld Renewable Energy Congress (2011), pp. 2751–2758.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Cross section of generic luminescent concentrator. Here, the incident pump light (1) is absorbed by a luminophore (blue circle) whereupon it is re-emitted at a different (longer) wavelength, at a given quantum efficiency. Some of this light (9) reaches the light output end by total internal reflection (TIR). Loss mechanisms include surface reflection (2), escape (3), self-absorption (4), inclusion scattering (5), non-radiative decay (6), host absorption (7), surface scattering (8) and no photon absorption (10).
Fig. 2
Fig. 2 UV-Vis absorbance measurement of Ce:YAG crystal.
Fig. 3
Fig. 3 Ce:YAG luminescent concentrator light source.
Fig. 4
Fig. 4 The schematic of the experimental set-up used to measure the (a) Photoluminescence quantum yield (PLQY), Trapping efficiency, η trap and (b) self-absorption efficiency, η SA of the Ce:YAG sample.
Fig. 5
Fig. 5 (a) Output spectrum of LC light source —76 mm long (here the pump spectrum is included at 460 nm) and (b) the CIE (1931) colour space chromaticity diagram; CIE coordinates (yellow dots) A (0.416, 0.565) with 0.95 calculated emission saturation (purity) for the 76 mm LC light source, and B (0.481, 0.510) and 0.985, respectively, for the four-strip LC light source.
Fig. 6
Fig. 6 The optical output power for a single strip LC.
Fig. 7
Fig. 7 The optical output power for a four-strip LC.
Fig. 8
Fig. 8 Normalized true luminescence spectrum (black), F 1 ( λ ) , the normalized observed luminescence spectrum (red), F 2 ( λ ) , and the scaled spectrum (blue), F 1 '( λ ) where F 1 '( λ ) matches with observed spectrum F 2 ( λ ) at wavelengths above 680 nm.
Fig. 9
Fig. 9 The decrease in output intensity with excitation-point distance due to self-absorption for a four-strip LC (four-strip Ce:YAG dimensions: 304 mm × 4.26 mm × 0.57 mm). The closely spaced (in excitation distance) values correspond to those on either side of the three optical joints, respectively, and the other values are taken at an interval of 35 mm.

Tables (3)

Tables Icon

Table 1 The relative performances/attributes of different types of yellow light sources

Tables Icon

Table 2 Estimates of the parameters affecting the luminescent concentrator’s conversion efficiency

Tables Icon

Table 3 Ray tracing simulation results for single Ce:YAG LC outputting light into air

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η opt =(1R) η abs η PLQY η Stokes η TIR η trap η host η SA
η trap = [ F em ( λ ) F face ( λ )]dλ F em ( λ )dλ
η SA =1 F 2 ( λ )dλ F 1 ( λ )dλ

Metrics