Abstract

We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infra-red wavelengths (950–2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 ± 0.3 kHz for the DPS-DFB laser, as compared to ΔνQPS = 30.4 ± 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (R-SHDI).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon

E. H. Bernhardi, H. A.G.M. van Wolferen, L. Agazzi, M. R.H. Khan, C. G.H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder
Opt. Lett. 35(14) 2394-2396 (2010)

Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform

Michael Belt, Taran Huffman, Michael L. Davenport, Wenzao Li, Jonathon S. Barton, and Daniel J. Blumenthal
Opt. Lett. 38(22) 4825-4828 (2013)

C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts
Opt. Lett. 38(11) 1760-1762 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
    [Crossref]
  2. B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).
  3. N. Kobayashi, K. Sato, M. Namiwaka, K. Yamamoto, S. Watanabe, T. Kita, H. Yamada, and H. Yamazaki, “Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers,” J. Lightwave Technol. 33(6), 1241–1246 (2015).
    [Crossref]
  4. C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” in Proceedings of the National Academy of Sciences,111, pp. 2879–2884, February 2014.
    [Crossref]
  5. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
    [Crossref]
  6. J. Purnawirman, T. N. Sun, G. Adam, D. Leake, J. D. B. Coolbaugh, E. S. Bradley, Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [Crossref]
  7. M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22(9), 10655–10660 (2014).
    [Crossref]
  8. E. S. Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
    [Crossref]
  9. M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013).
    [Crossref]
  10. E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).
  11. G. Singh, J. D. B. Purnawirman, N. Bradley, E. S. Li, M. Magden, T. N. Moresco, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
    [Crossref]
  12. N. Li, Z. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
    [Crossref]
  13. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref]
  14. Z. Su, N. Li, E. S. Magden, M. Byrd, T. N. Purnawirman, G. Adam, D. Leake, J. D. B. Coolbaugh, Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
    [Crossref]
  15. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
  16. K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
    [Crossref]
  17. J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4(9), 1063–1066 (1992).
    [Crossref]
  18. N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Purnawirman, D. Leake, D. Coolbaugh, Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24(20), 22741–22748 (2016).
    [Crossref]
  19. H. Abe, S. G. Ayling, J. H. Marsh, R. M. Delarue, and J. S. Roberts, “Single-mode operation of a surface grating distributed-feedback GaAs-AlGaAs laser with variable-width waveguide,” IEEE Photonics Technol. Lett. 7(5), 452–454 (1995).
    [Crossref]
  20. M. Okai, “Spectral characteristics of distributed-feedback semiconductor-lasers and their improvements by corrugation-pitch-modulated structure,” J. Appl. Phys. 75(1), 1–29 (1994).
    [Crossref]
  21. J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016).
  22. N. Purnawirman, E. S. Li, G. Magden, M. Singh, T. N. Moresco, G. Adam, D. Leake, J. D. B. Coolbaugh, Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
    [Crossref]
  23. N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
    [Crossref]
  24. S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
  25. S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Akiyama, T. Kurahashi, Y. Tanaka, and K. Morito, “Four-wavelength silicon hybrid laser array with ring-resonator based mirror for efficient CWDM transmitter,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, OTh1D3.
    [Crossref]
  26. S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
    [Crossref]
  27. S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
    [Crossref]
  28. T. E. Murphy, “Design, fabrication and measurement of integrated Bragg grating optical filters,” Ph.D. Thesis (Massachusetts Institute of Technology, 2001).
  29. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high-resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [Crossref]
  30. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]
  31. M. Pollnau and M. Eichhorn, “The Schawlow-Townes linewidth; a threefold approximation,” in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), CA_P_39.
  32. M. Chen, Z. Meng, J. Wang, and W. Chen, “Ultra-narrow linewidth measurement based on Voigt profile fitting,” Opt. Express 23(5), 6803–6808 (2015).
    [Crossref]
  33. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
    [Crossref]

2017 (4)

2016 (3)

2015 (3)

2014 (2)

2013 (2)

2012 (2)

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref]

2010 (1)

2009 (2)

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref]

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).

2004 (1)

1995 (1)

H. Abe, S. G. Ayling, J. H. Marsh, R. M. Delarue, and J. S. Roberts, “Single-mode operation of a surface grating distributed-feedback GaAs-AlGaAs laser with variable-width waveguide,” IEEE Photonics Technol. Lett. 7(5), 452–454 (1995).
[Crossref]

1994 (1)

M. Okai, “Spectral characteristics of distributed-feedback semiconductor-lasers and their improvements by corrugation-pitch-modulated structure,” J. Appl. Phys. 75(1), 1–29 (1994).
[Crossref]

1992 (1)

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4(9), 1063–1066 (1992).
[Crossref]

1991 (1)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

1986 (1)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

1984 (1)

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high-resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Abe, H.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. Delarue, and J. S. Roberts, “Single-mode operation of a surface grating distributed-feedback GaAs-AlGaAs laser with variable-width waveguide,” IEEE Photonics Technol. Lett. 7(5), 452–454 (1995).
[Crossref]

Adam, D.

Adam, G.

Agazzi, L.

Akiyama, S.

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Akiyama, T.

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Ayling, S. G.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. Delarue, and J. S. Roberts, “Single-mode operation of a surface grating distributed-feedback GaAs-AlGaAs laser with variable-width waveguide,” IEEE Photonics Technol. Lett. 7(5), 452–454 (1995).
[Crossref]

Baiocco, C.

Baldycheva, J.

E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).

Barton, J. S.

Belt, M.

Bernhardi, E. H.

Blumenthal, D. J.

Bowers, J. E.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).

Bradley,

Bradley, E. S.

Bradley, G.

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

Bradley, J.

Bradley, J. D. B.

Bradley, N.

Bradley, T. N.

E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).

Byrd, J. D. B.

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

Byrd, M.

Byrd, M. J.

Callahan, P. T.

Chen, M.

Chen, W.

Cohen, O.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).

Coolbaugh,

Coolbaugh, D.

Coolbaugh, J. D. B.

Davenport, M. L.

Dawson, J. W.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4(9), 1063–1066 (1992).
[Crossref]

de Ridder, R. M.

Delarue, R. M.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. Delarue, and J. S. Roberts, “Single-mode operation of a surface grating distributed-feedback GaAs-AlGaAs laser with variable-width waveguide,” IEEE Photonics Technol. Lett. 7(5), 452–454 (1995).
[Crossref]

Du, Y.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array,” IEEE J. Quantum Electron. 51, 2600108 (2015).

Fang, A. W.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).

Geng, J.

Gondarenko, A.

Hatori, N.

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Hosseini,

Hosseini, A.

E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).

Hosseini, E. S.

Hu, Y.

Huang, Y. Z.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array,” IEEE J. Quantum Electron. 51, 2600108 (2015).

Huffman, T.

Ippen, E. P.

Jeong, S.-H.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref]

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Jiang, S.

Jones, R.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).

Kaneda, Y.

Kärtner, F. X.

Khan, M. R. H.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high-resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Kita, T.

Kobayashi, N.

Koch, B. R.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).

Kruger, M. S.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Kurahashi, T.

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref]

Leake,

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

Leake, D.

N. Purnawirman, E. S. Li, G. Magden, M. Singh, T. N. Moresco, G. Adam, D. Leake, J. D. B. Coolbaugh, Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref]

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Purnawirman, D. Leake, D. Coolbaugh, Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24(20), 22741–22748 (2016).
[Crossref]

G. Singh, J. D. B. Purnawirman, N. Bradley, E. S. Li, M. Magden, T. N. Moresco, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, T. N. Purnawirman, G. Adam, D. Leake, J. D. B. Coolbaugh, Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref]

J. Purnawirman, T. N. Sun, G. Adam, D. Leake, J. D. B. Coolbaugh, E. S. Bradley, Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref]

E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).

Leake, T. N.

Levy, J. S.

Li, E. S.

Li, N.

Li, W.

Lipson, M.

Lively, E.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).

Magden, C. V.

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

Magden, E. S.

Magden, G.

Magden, M.

Mandelberg, H. I.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Marsh, J. H.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. Delarue, and J. S. Roberts, “Single-mode operation of a surface grating distributed-feedback GaAs-AlGaAs laser with variable-width waveguide,” IEEE Photonics Technol. Lett. 7(5), 452–454 (1995).
[Crossref]

McGrath, P. A.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Meng, Z.

Mercer, L. B.

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

Moresco, T. N.

Morito, K.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref]

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Nakano, Y.

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high-resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Namiwaka, M.

Okai, M.

M. Okai, “Spectral characteristics of distributed-feedback semiconductor-lasers and their improvements by corrugation-pitch-modulated structure,” J. Appl. Phys. 75(1), 1–29 (1994).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high-resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Park, N.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4(9), 1063–1066 (1992).
[Crossref]

Peyghambarian, N.

Pollnau, M.

Poulton, A.

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

Poulton, C. V.

Purnawirman, E. S.

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).

Purnawirman, G.

Purnawirman, J.

Purnawirman, J. D. B.

Purnawirman, N.

Purnawirman, T. N.

Purnawirman, Z.

Raval, M.

Richter, L. E.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Roberts, J. S.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. Delarue, and J. S. Roberts, “Single-mode operation of a surface grating distributed-feedback GaAs-AlGaAs laser with variable-width waveguide,” IEEE Photonics Technol. Lett. 7(5), 452–454 (1995).
[Crossref]

Roeloffzen, C. G. H.

Ruocco, A.

Ruocco, N.

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

Santis, C. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” in Proceedings of the National Academy of Sciences,111, pp. 2879–2884, February 2014.
[Crossref]

Sato, K.

Sekiguchi, S.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref]

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Shtyrkova, K.

Singh, G.

Singh, M.

Singh, M. J.

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

Spiegelberg, C.

Steger, S. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” in Proceedings of the National Academy of Sciences,111, pp. 2879–2884, February 2014.
[Crossref]

Su, Z.

Sui, S. S.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array,” IEEE J. Quantum Electron. 51, 2600108 (2015).

Sun, G.

Sun, J. D. B.

E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).

Sun, T. N.

Tada, K.

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

Tanaka, S.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref]

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Tanaka, Y.

S. Tanaka, S.-H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref]

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Tang, M. Y.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array,” IEEE J. Quantum Electron. 51, 2600108 (2015).

Timurdogan, E.

Ushirokawa, A.

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

Usuki, T.

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Vahala, K. J.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4(9), 1063–1066 (1992).
[Crossref]

van Wolferen, H. A. G. M.

Vasilyev, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” in Proceedings of the National Academy of Sciences,111, pp. 2879–2884, February 2014.
[Crossref]

Vermeulen,

Vermeulen, D.

Vilenchik, Y.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” in Proceedings of the National Academy of Sciences,111, pp. 2879–2884, February 2014.
[Crossref]

Wang, J.

Watanabe, S.

Watts, M. R.

N. Li, Z. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).

N. Purnawirman, E. S. Li, G. Magden, M. Singh, T. N. Moresco, G. Adam, D. Leake, J. D. B. Coolbaugh, Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref]

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Purnawirman, D. Leake, D. Coolbaugh, Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24(20), 22741–22748 (2016).
[Crossref]

G. Singh, J. D. B. Purnawirman, N. Bradley, E. S. Li, M. Magden, T. N. Moresco, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, T. N. Purnawirman, G. Adam, D. Leake, J. D. B. Coolbaugh, Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref]

E. S. Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref]

J. Purnawirman, T. N. Sun, G. Adam, D. Leake, J. D. B. Coolbaugh, E. S. Bradley, Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref]

E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).

Wörhoff, K.

Xiao, J. L.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array,” IEEE J. Quantum Electron. 51, 2600108 (2015).

Xin, M.

Yamada, H.

Yamamoto, K.

Yamamoto, T.

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Yamazaki, H.

Yang, Y. D.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array,” IEEE J. Quantum Electron. 51, 2600108 (2015).

Yariv, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” in Proceedings of the National Academy of Sciences,111, pp. 2879–2884, February 2014.
[Crossref]

Appl. Phys. Lett. (1)

N. Li, Z. Su, E. S. Purnawirman, C. V. Magden, A. Poulton, N. Ruocco, M. J. Singh, J. D. B. Byrd, G. Bradley, Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref]

Electron. Lett. (2)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high-resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

IEEE J. Quantum Electron. (2)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array,” IEEE J. Quantum Electron. 51, 2600108 (2015).

IEEE Photonics Technol. Lett. (2)

H. Abe, S. G. Ayling, J. H. Marsh, R. M. Delarue, and J. S. Roberts, “Single-mode operation of a surface grating distributed-feedback GaAs-AlGaAs laser with variable-width waveguide,” IEEE Photonics Technol. Lett. 7(5), 452–454 (1995).
[Crossref]

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4(9), 1063–1066 (1992).
[Crossref]

J. Appl. Phys. (1)

M. Okai, “Spectral characteristics of distributed-feedback semiconductor-lasers and their improvements by corrugation-pitch-modulated structure,” J. Appl. Phys. 75(1), 1–29 (1994).
[Crossref]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (1)

S.-H. Jeong, S. Tanaka, S. Sekiguchi, T. Kurahashi, N. Hatori, S. Akiyama, T. Usuki, T. Yamamoto, T. Akiyama, Y. Tanaka, and K. Morito, “Silicon-wire waveguide based external cavity laser for milliwatt-order output power and temperature control free operation with silicon ring modulator,” Jpn. J. Appl. Phys. 51(8R), 082101 (2012).
[Crossref]

Laser Photonics Rev. (1)

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photonics Rev. 3(4), 355–369 (2009).

Opt. Express (5)

Opt. Lett. (9)

N. Purnawirman, E. S. Li, G. Magden, M. Singh, T. N. Moresco, G. Adam, D. Leake, J. D. B. Coolbaugh, Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, T. N. Purnawirman, G. Adam, D. Leake, J. D. B. Coolbaugh, Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref]

J. Purnawirman, T. N. Sun, G. Adam, D. Leake, J. D. B. Coolbaugh, E. S. Bradley, Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref]

G. Singh, J. D. B. Purnawirman, N. Bradley, E. S. Li, M. Magden, T. N. Moresco, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref]

N. Li, Z. Purnawirman, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
[Crossref]

E. S. Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref]

M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013).
[Crossref]

Other (6)

E. S. Purnawirman, A. Hosseini, J. Baldycheva, J. D. B. Sun, T. N. Bradley, G. Adam, D. Leake, Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), (2014).

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” in Proceedings of the National Academy of Sciences,111, pp. 2879–2884, February 2014.
[Crossref]

T. E. Murphy, “Design, fabrication and measurement of integrated Bragg grating optical filters,” Ph.D. Thesis (Massachusetts Institute of Technology, 2001).

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “1.8-µm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016).

S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Akiyama, T. Kurahashi, Y. Tanaka, and K. Morito, “Four-wavelength silicon hybrid laser array with ring-resonator based mirror for efficient CWDM transmitter,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, OTh1D3.
[Crossref]

M. Pollnau and M. Eichhorn, “The Schawlow-Townes linewidth; a threefold approximation,” in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2015), CA_P_39.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of wavelength-insensitive laser waveguide design by multi-segmented SiNx structure. (b) Mode-solver calculation of the intensity distribution for various near infrared wavelengths in the multi-segmented waveguide design.
Fig. 2
Fig. 2 (a) Calculated confinement factor in the multi-segmented waveguide for typical NIR diode pump and rare earth laser wavelengths. (b) Calculated intensity overlap between 980-nm mode and NIR diode and rare earth laser modes.
Fig. 3
Fig. 3 (a) Design of Al2O3:Er3+ QPS-DFB (not to scale). The cavity structure consists of five continuous SiNx segments with grating perturbation provided by two additional periodic side pieces. (b) Optical spectrum of Al2O3:Er3+ QPS-DFB lasers at various grating periods. (c) On-chip laser power of Al2O3:Er3+ QPS-DFB lasers vs. pump power.
Fig. 4
Fig. 4 (a) Design of Al2O3:Er3+ DPS-DFB laser with five-segment SiNx waveguide (not to scale). The cavity structure consists of five continuous SiNx segments with grating perturbation provided by two additional side pieces, one with a phase shift region (top) and the other with periodic segments (bottom). (b) Optical spectrum of Al2O3:Er3+ DPS-DFB lasers at various grating periods. (c) On-chip laser power of Al2O3:Er3+ DPS-DFB lasers vs. pump power.
Fig. 5
Fig. 5 Recirculating self-heterodyne delayed interferometer for ultra-narrow-linewidth measurement.
Fig. 6
Fig. 6 Self-heterodyne spectra of Al2O3:Er3+ QPS- (red) and DPS- (blue) DFB lasers in (a) linear and (b) dB scale. The solid lines of the same color are the fits of the corresponding measurements (dots).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α tot =  σ a N+ α b
γ s/p = A I s/p dA I s/p dA = gain(ij) I ij (s/p) ij I ij (s/p)
Γ s/p = A I p I s dA A I p 2 dA A I s 2 dA = gain(ij) I ij (p) I ij (s) gain(ij) I ij 2 (p) gain(ij) I ij 2 (s)

Metrics