Abstract

Passive ocean observing sensors are unable to detect subsurface structure in ocean properties, resulting in errors in water column integrated phytoplankton biomass and net primary production (NPP) estimates. Active lidar (light detection and ranging) sensors make quantitative measurements of depth-resolved backscatter (bbp) and diffuse light attenuation (Kd) coefficients in the ocean and can provide critical measurements for biogeochemical models. Sub-surface phytoplankton biomass, light, chlorophyll, and NPP fields were characterized using both in situ measurements and coincident airborne high spectral resolution lidar (HSRL-1) measurements collected as part of the SABOR (Ship-Aircraft Bio-Optical Research) field campaign. We found that depth-resolved data are critical for calculating phytoplankton stocks and NPP, with improvements in NPP estimates up to 54%. We observed strong correlations between coincident HSRL-1 and in situ IOP measurements of both bbp (r = 0.94) and Kd (r = 0.90).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Estimating primary production at depth from remote sensing

Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, and M. J. Perry
Appl. Opt. 35(3) 463-474 (1996)

Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements

Xiaomei Lu, Yongxiang Hu, Jacques Pelon, Charles Trepte, Katie Liu, Sharon Rodier, Shan Zeng, Patricia Lucker, Ron Verhappen, Jamie Wilson, Claude Audouy, Christophe Ferrier, Said Haouchine, Bill Hunt, and Brian Getzewich
Opt. Express 24(25) 29001-29008 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Churnside, “Bio-optical model to describe remote sensing signals from a stratified ocean,” J. Appl. Remote Sens. 9(1), 095989 (2015).
    [Crossref]
  2. M. G. Jacox, C. A. Edwards, M. Kahru, D. L. Rudnick, and R. M. Kudela, “The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 112, 107–116 (2015).
    [Crossref]
  3. M. Stramska and D. Stramski, “Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44(9), 1735–1747 (2005).
    [Crossref] [PubMed]
  4. T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241(4873), 1613–1620 (1988).
    [Crossref] [PubMed]
  5. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27(19), 3969–3977 (1988).
    [Crossref] [PubMed]
  6. J. H. Churnside, B. J. McCarty, and X. Lu, “Subsurface ocean signals from an orbiting polarization lidar,” Remote Sens. 5(7), 3457–3475 (2013).
    [Crossref]
  7. J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2014).
    [Crossref]
  8. J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, J. Collins, N. Stockley, M. Twardowski, I. Cetinic, R. Ferrare, and T. Mack, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), pp. 22001.
    [Crossref]
  9. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
    [Crossref] [PubMed]
  10. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), 2299 (2005).
    [Crossref]
  11. T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon‐based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), 3078 (2008).
    [Crossref]
  12. J. W. Campbell and J. E. O’Reilly, “Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf,” Cont. Shelf Res. 8(2), 179–204 (1988).
    [Crossref]
  13. J. E. O'Reilly and C. Zetlin, “Seasonal, horizontal, and vertical distribution of phytoplankton chlorophyll a in the northeast US continental shelf ecosystem,” NOAA Technical Report NMFS 139 (1998).
  14. M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
    [Crossref]
  15. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII (International Society for Optics and Photonics, 1994), pp. 44–55.
  16. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44(9), 1667–1680 (2005).
    [Crossref] [PubMed]
  17. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, (Springer Berlin Heidelberg, 2013), pp. 189–224.
  18. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
    [Crossref]
  19. J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).
  20. R. W. Austin and T. J. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters: a reexamination using new data,” in Orlando’90 (International Society for Optics and Photonics, 1990), pp. 79–93.
  21. A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
    [Crossref]
  22. C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology,” J. Geophys. Res. Oceans 109, C12003 (2004).
    [Crossref]
  23. R. M. Letelier, D. M. Karl, M. R. Abbott, and R. R. Bidigare, “Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre,” Limnol. Oceanogr. 49(2), 508–519 (2004).
    [Crossref]
  24. M. E. Conkright, R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, World Ocean Atlas 2001: Objective analyses, data statistics, and figures: CD-ROM documentation. US Department of Commerce, National Oceanic and Atmospheric Administration, National Oceanographic Data Center, Ocean Climate Laboratory, (2002).
  25. J. R. Zaneveld, A. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13(22), 9052–9061 (2005).
    [Crossref] [PubMed]
  26. W. J. Moses, S. G. Ackleson, J. W. Hair, C. A. Hostetler, and W. D. Miller, “Spatial scales of optical variability in the coastal ocean: implications for remote sensing and in situ sampling,” J. Geophys. Res. Oceans 121(6), 4194–4208 (2016).
    [Crossref]
  27. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
    [Crossref]
  28. M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
    [Crossref]
  29. M. Behrenfeld, Y. Hu, R. O'Malley, E. Boss, C. Hostetler, D. Siegel, J. Sarmiento, J. Schulien, J. Hair, X. Lu, S. Rodier, and A. J. Scarino, “Decade of polar phytoplankton biomass cycles characterized using space-based lidar,” Nat. Geosci. (posted 19 December 2016, in press).

2016 (1)

W. J. Moses, S. G. Ackleson, J. W. Hair, C. A. Hostetler, and W. D. Miller, “Spatial scales of optical variability in the coastal ocean: implications for remote sensing and in situ sampling,” J. Geophys. Res. Oceans 121(6), 4194–4208 (2016).
[Crossref]

2015 (3)

J. H. Churnside, “Bio-optical model to describe remote sensing signals from a stratified ocean,” J. Appl. Remote Sens. 9(1), 095989 (2015).
[Crossref]

M. G. Jacox, C. A. Edwards, M. Kahru, D. L. Rudnick, and R. M. Kudela, “The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 112, 107–116 (2015).
[Crossref]

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

2014 (1)

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2014).
[Crossref]

2013 (2)

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

J. H. Churnside, B. J. McCarty, and X. Lu, “Subsurface ocean signals from an orbiting polarization lidar,” Remote Sens. 5(7), 3457–3475 (2013).
[Crossref]

2008 (2)

T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon‐based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), 3078 (2008).
[Crossref]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

2007 (1)

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

2005 (5)

2004 (2)

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology,” J. Geophys. Res. Oceans 109, C12003 (2004).
[Crossref]

R. M. Letelier, D. M. Karl, M. R. Abbott, and R. R. Bidigare, “Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre,” Limnol. Oceanogr. 49(2), 508–519 (2004).
[Crossref]

1999 (1)

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

1988 (4)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27(19), 3969–3977 (1988).
[Crossref] [PubMed]

J. W. Campbell and J. E. O’Reilly, “Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf,” Cont. Shelf Res. 8(2), 179–204 (1988).
[Crossref]

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241(4873), 1613–1620 (1988).
[Crossref] [PubMed]

Abbott, M. R.

R. M. Letelier, D. M. Karl, M. R. Abbott, and R. R. Bidigare, “Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre,” Limnol. Oceanogr. 49(2), 508–519 (2004).
[Crossref]

Ackleson, S. G.

W. J. Moses, S. G. Ackleson, J. W. Hair, C. A. Hostetler, and W. D. Miller, “Spatial scales of optical variability in the coastal ocean: implications for remote sensing and in situ sampling,” J. Geophys. Res. Oceans 121(6), 4194–4208 (2016).
[Crossref]

Babin, M.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Bailey, S. W.

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Barnard, A.

Behrenfeld, M. J.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon‐based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), 3078 (2008).
[Crossref]

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), 2299 (2005).
[Crossref]

Berry, R. E.

Bidigare, R. R.

R. M. Letelier, D. M. Karl, M. R. Abbott, and R. R. Bidigare, “Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre,” Limnol. Oceanogr. 49(2), 508–519 (2004).
[Crossref]

Boss, E.

T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon‐based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), 3078 (2008).
[Crossref]

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), 2299 (2005).
[Crossref]

J. R. Zaneveld, A. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13(22), 9052–9061 (2005).
[Crossref] [PubMed]

Bricaud, A.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, M. B.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Buntzen, R. R.

Campbell, J. W.

J. W. Campbell and J. E. O’Reilly, “Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf,” Cont. Shelf Res. 8(2), 179–204 (1988).
[Crossref]

Churnside, J. H.

J. H. Churnside, “Bio-optical model to describe remote sensing signals from a stratified ocean,” J. Appl. Remote Sens. 9(1), 095989 (2015).
[Crossref]

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2014).
[Crossref]

J. H. Churnside, B. J. McCarty, and X. Lu, “Subsurface ocean signals from an orbiting polarization lidar,” Remote Sens. 5(7), 3457–3475 (2013).
[Crossref]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Claustre, H.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Cook, A. L.

Dall’Olmo, G.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

de Boyer Montégut, C.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology,” J. Geophys. Res. Oceans 109, C12003 (2004).
[Crossref]

Donaghay, P. L.

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44(9), 1667–1680 (2005).
[Crossref] [PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

Edwards, C. A.

M. G. Jacox, C. A. Edwards, M. Kahru, D. L. Rudnick, and R. M. Kudela, “The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 112, 107–116 (2015).
[Crossref]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Ferrare, R. A.

Fischer, A. S.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology,” J. Geophys. Res. Oceans 109, C12003 (2004).
[Crossref]

Freeman, S. A.

Gentili, B.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Gilbert, G. D.

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Graff, J. R.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

Hair, J. W.

W. J. Moses, S. G. Ackleson, J. W. Hair, C. A. Hostetler, and W. D. Miller, “Spatial scales of optical variability in the coastal ocean: implications for remote sensing and in situ sampling,” J. Geophys. Res. Oceans 121(6), 4194–4208 (2016).
[Crossref]

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

Harper, D. B.

Hoge, F. E.

Hostetler, C. A.

W. J. Moses, S. G. Ackleson, J. W. Hair, C. A. Hostetler, and W. D. Miller, “Spatial scales of optical variability in the coastal ocean: implications for remote sensing and in situ sampling,” J. Geophys. Res. Oceans 121(6), 4194–4208 (2016).
[Crossref]

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

Hovis, F. E.

Hu, Y.

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

Iudicone, D.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology,” J. Geophys. Res. Oceans 109, C12003 (2004).
[Crossref]

Izquierdo, L. R.

Jacox, M. G.

M. G. Jacox, C. A. Edwards, M. Kahru, D. L. Rudnick, and R. M. Kudela, “The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 112, 107–116 (2015).
[Crossref]

Kahru, M.

M. G. Jacox, C. A. Edwards, M. Kahru, D. L. Rudnick, and R. M. Kudela, “The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 112, 107–116 (2015).
[Crossref]

Karl, D. M.

R. M. Letelier, D. M. Karl, M. R. Abbott, and R. R. Bidigare, “Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre,” Limnol. Oceanogr. 49(2), 508–519 (2004).
[Crossref]

Krabill, W. B.

Kudela, R. M.

M. G. Jacox, C. A. Edwards, M. Kahru, D. L. Rudnick, and R. M. Kudela, “The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 112, 107–116 (2015).
[Crossref]

Lazar, A.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology,” J. Geophys. Res. Oceans 109, C12003 (2004).
[Crossref]

Letelier, R. M.

R. M. Letelier, D. M. Karl, M. R. Abbott, and R. R. Bidigare, “Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre,” Limnol. Oceanogr. 49(2), 508–519 (2004).
[Crossref]

Lu, X.

J. H. Churnside, B. J. McCarty, and X. Lu, “Subsurface ocean signals from an orbiting polarization lidar,” Remote Sens. 5(7), 3457–3475 (2013).
[Crossref]

Mack, T. L.

Madec, G.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology,” J. Geophys. Res. Oceans 109, C12003 (2004).
[Crossref]

McCarty, B. J.

J. H. Churnside, B. J. McCarty, and X. Lu, “Subsurface ocean signals from an orbiting polarization lidar,” Remote Sens. 5(7), 3457–3475 (2013).
[Crossref]

Miller, W. D.

W. J. Moses, S. G. Ackleson, J. W. Hair, C. A. Hostetler, and W. D. Miller, “Spatial scales of optical variability in the coastal ocean: implications for remote sensing and in situ sampling,” J. Geophys. Res. Oceans 121(6), 4194–4208 (2016).
[Crossref]

Milligan, A. J.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

Morel, A.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Moses, W. J.

W. J. Moses, S. G. Ackleson, J. W. Hair, C. A. Hostetler, and W. D. Miller, “Spatial scales of optical variability in the coastal ocean: implications for remote sensing and in situ sampling,” J. Geophys. Res. Oceans 121(6), 4194–4208 (2016).
[Crossref]

O’Reilly, J. E.

J. W. Campbell and J. E. O’Reilly, “Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf,” Cont. Shelf Res. 8(2), 179–204 (1988).
[Crossref]

Platt, T.

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241(4873), 1613–1620 (1988).
[Crossref] [PubMed]

Ras, J.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Reifel, K. M.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

Rodier, S. D.

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

Rudnick, D. L.

M. G. Jacox, C. A. Edwards, M. Kahru, D. L. Rudnick, and R. M. Kudela, “The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 112, 107–116 (2015).
[Crossref]

Sathyendranath, S.

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241(4873), 1613–1620 (1988).
[Crossref] [PubMed]

Shea, D. M.

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), 2299 (2005).
[Crossref]

Siegel, D. A.

T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon‐based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), 3078 (2008).
[Crossref]

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), 2299 (2005).
[Crossref]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Stramska, M.

Stramski, D.

Sullivan, J. M.

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44(9), 1667–1680 (2005).
[Crossref] [PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

Swift, R. N.

Tieche, F.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Trepte, C. R.

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

Twardowski, M. S.

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44(9), 1667–1680 (2005).
[Crossref] [PubMed]

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

van Dongen-Vogels, V.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

Welch, W.

Werdell, P. J.

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

Westberry, T.

T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon‐based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), 3078 (2008).
[Crossref]

Westberry, T. K.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

Wright, C. W.

Yungel, J. K.

Zaneveld, J. R.

Zaneveld, J. R. V.

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

Appl. Opt. (4)

Cont. Shelf Res. (1)

J. W. Campbell and J. E. O’Reilly, “Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf,” Cont. Shelf Res. 8(2), 179–204 (1988).
[Crossref]

Deep Sea Res. Part 1 Oceanogr. Res. Pap. (1)

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part 1 Oceanogr. Res. Pap. 102, 16–25 (2015).

Deep Sea Res. Part 2 Top. Stud. Oceanogr. (1)

M. G. Jacox, C. A. Edwards, M. Kahru, D. L. Rudnick, and R. M. Kudela, “The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 112, 107–116 (2015).
[Crossref]

Geophys. Res. Lett. (1)

M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett. 40(16), 4355–4360 (2013).
[Crossref]

Global Biogeochem. Cycles (2)

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon‐based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), 2299 (2005).
[Crossref]

T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon‐based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), 3078 (2008).
[Crossref]

J. Appl. Remote Sens. (1)

J. H. Churnside, “Bio-optical model to describe remote sensing signals from a stratified ocean,” J. Appl. Remote Sens. 9(1), 095989 (2015).
[Crossref]

J. Atmos. Ocean. Technol. (1)

M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999).
[Crossref]

J. Geophys. Res. Atmos. (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

J. Geophys. Res. Oceans (2)

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology,” J. Geophys. Res. Oceans 109, C12003 (2004).
[Crossref]

W. J. Moses, S. G. Ackleson, J. W. Hair, C. A. Hostetler, and W. D. Miller, “Spatial scales of optical variability in the coastal ocean: implications for remote sensing and in situ sampling,” J. Geophys. Res. Oceans 121(6), 4194–4208 (2016).
[Crossref]

Limnol. Oceanogr. (2)

R. M. Letelier, D. M. Karl, M. R. Abbott, and R. R. Bidigare, “Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre,” Limnol. Oceanogr. 49(2), 508–519 (2004).
[Crossref]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Opt. Eng. (1)

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2014).
[Crossref]

Opt. Express (1)

Remote Sens. (1)

J. H. Churnside, B. J. McCarty, and X. Lu, “Subsurface ocean signals from an orbiting polarization lidar,” Remote Sens. 5(7), 3457–3475 (2013).
[Crossref]

Remote Sens. Environ. (1)

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

Science (1)

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241(4873), 1613–1620 (1988).
[Crossref] [PubMed]

Other (7)

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, J. Collins, N. Stockley, M. Twardowski, I. Cetinic, R. Ferrare, and T. Mack, “Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar,” in EPJ Web of Conferences (EDP Sciences, 2016), pp. 22001.
[Crossref]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, (Springer Berlin Heidelberg, 2013), pp. 189–224.

R. W. Austin and T. J. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters: a reexamination using new data,” in Orlando’90 (International Society for Optics and Photonics, 1990), pp. 79–93.

M. E. Conkright, R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, World Ocean Atlas 2001: Objective analyses, data statistics, and figures: CD-ROM documentation. US Department of Commerce, National Oceanic and Atmospheric Administration, National Oceanographic Data Center, Ocean Climate Laboratory, (2002).

J. E. O'Reilly and C. Zetlin, “Seasonal, horizontal, and vertical distribution of phytoplankton chlorophyll a in the northeast US continental shelf ecosystem,” NOAA Technical Report NMFS 139 (1998).

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII (International Society for Optics and Photonics, 1994), pp. 44–55.

M. Behrenfeld, Y. Hu, R. O'Malley, E. Boss, C. Hostetler, D. Siegel, J. Sarmiento, J. Schulien, J. Hair, X. Lu, S. Rodier, and A. J. Scarino, “Decade of polar phytoplankton biomass cycles characterized using space-based lidar,” Nat. Geosci. (posted 19 December 2016, in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SABOR stations plotted as a function of percent relative error in (a) Cphyto and (b) Kd(532), where percent relative error is a measure of vertical structure. Isobaths are plotted at 1000 m intervals.

Fig. 2
Fig. 2

NPP (mg C m−3 d−1) profiles from the carbon-based production model (CbPM) at every station where the maximum depth is greater than the euphotic depth. The black lines are the in situ optics-based estimates. The profiles which use surface-weighted values in the traditional CbPM are shown in blue. Panels (a) and (h) are the stations with replicate casts (∆t < 1 day, same station) with the error bars representing one standard deviation.

Fig. 3
Fig. 3

HSRL-1 and in situ measurements of (a) bbp (m−1) and (b) Kd (m−1) with marker color indicating optical depth. The dotted red lines show the 1:1 relationship.

Fig. 4
Fig. 4

HSRL-1 and in situ measurements of bbp (m−1). The black profiles are the in situ measurements where panels (a) and (h) show the stations with replicate casts (∆t < 1 day, same station) with the error bars representing one standard deviation. The red profiles are the HSRL-1 measurements (median of ten nearest profiles to in situ cast) with the error bars representing one standard deviation within profiles. The error bars are a measure of the spatial variability around each station. The dotted lines show the first and second optical depths.

Fig. 5
Fig. 5

HSRL-1 and in situ measurements of Kd (m−1). The black profiles are the in situ measurements where panels (a) and (h) show the stations with replicate casts (∆t < 1 day, same station) with the error bars representing one standard deviation. The red profiles are the HSRL-1 measurements (median of ten nearest profiles to in situ cast) with the error bars representing one standard deviation within profiles. The error bars are a measure of the spatial variability around each station. The dotted lines show the first and second optical depths.

Fig. 6
Fig. 6

HSRL-1 and in situ measurements of (a) chlorophyll a (Chl; mg m−3) and (b) net primary production (NPP; mg m−3 d−1). The inset in panel (b) shows the full range of data with x and y-axes limits set to 200 mg m−3d−1. The red lines show the 1:1 relationship.

Tables (1)

Tables Icon

Table 1 Distances between the HSRL-1 nearest profile and optics cast

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P h o t o a c c lim a t i o n = 0.022 + ( 0.045 0.022 ) e 3 I g ,
C h l o r o p h y l l = p h o t o a c c lim a t i o n * C p h y t o ,
I g = ( P A R * 0.975 / d l ) e K d * M L D 2 ,
r e l ( % ) = 100 * r e l y ¯ ,
r e l = i = 1 n ( y i y i ) ^ n ,
( % ) = 100 * y ¯ ,
= i = 1 n | y i y i | ^ n .
R M S E ( % ) = 100 * R M S E y ¯ ,
R M S E = i = 1 n ( y i y i ) 2 ^ n .

Metrics