Abstract

We theoretically propose a feasible scheme to advance or slow the propagation of light in a monolayer MoS2 nanoresonator (NR). The scheme allows one to easily turn on or off the fast (superluminal) and slow (subluminal) light effects and switch freely between fast and slow light propagation by only adjusting the frequency or intensity of the pump field. As the exciton interacts strongly with the phonons in MoS2, the slow light effect will appear along with a large dispersion with a very steep negative slope and a sharp absorption peak. Especially, the maximal group velocity index of the slow light in the monolayer MoS2 NR can reach two orders of magnitude larger than that in a carbon nanotube resonator. These results provide a new way to measure the exciton-phonon coupling strength and may prove useful in device applications such as optical switching and optical signal processing.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

27 June 2017: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals

Fang Bo, Guoquan Zhang, and Jingjun Xu
Opt. Express 13(20) 8198-8203 (2005)

Microwave field controlled slow and fast light with a coupled system consisting of a nanomechanical resonator and a Cooper-pair box

Peng-Cheng Ma, Yin Xiao, Ya-Fei Yu, and Zhi-Ming Zhang
Opt. Express 22(3) 3621-3628 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  2. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
    [Crossref] [PubMed]
  3. X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
    [Crossref]
  4. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
    [Crossref]
  5. E. Cabrera-Granado, E. Díaz, and O. G. Calderón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107(1), 013901 (2011).
    [Crossref] [PubMed]
  6. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref] [PubMed]
  8. J. J. Li and K. D. Zhu, “Tunable slow and fast light device based on a carbon nanotube resonator,” Opt. Express 20(6), 5840–5848 (2012).
    [Crossref] [PubMed]
  9. M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92(2), 023846 (2015).
    [Crossref]
  10. M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95(2), 023810 (2017).
    [Crossref]
  11. P. C. Ma, Y. Xiao, Y. F. Yu, and Z. M. Zhang, “Microwave field controlled slow and fast light with a coupled system consisting of a nanomechanical resonator and a Cooper-pair box,” Opt. Express 22(3), 3621–3628 (2014).
    [Crossref] [PubMed]
  12. V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
    [Crossref] [PubMed]
  13. Y. He and M. Jiang, “Ultrasensitive mass sensing method based on slow light in cavity optomechanics,” Appl. Phys. Express 9(5), 052205 (2016).
    [Crossref]
  14. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  15. S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
    [Crossref] [PubMed]
  16. K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
    [Crossref] [PubMed]
  17. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
    [Crossref] [PubMed]
  18. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  19. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  20. B. Radisavljevic, M. B. Whitwick, and A. Kis, “Small-signal amplifier based on single-layer MoS2,” Appl. Phys. Lett. 101(4), 043103 (2012).
    [Crossref]
  21. S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, and L. Kulyuk, “Nonlinear optical responses in two- dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5 W0.5S2,” Opt. Express 24(18), 20685–20695 (2016).
    [Crossref] [PubMed]
  22. S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
    [Crossref] [PubMed]
  23. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
    [Crossref] [PubMed]
  24. N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
    [Crossref]
  25. S. Xiao, B. Lv, L. Wu, M. Zhu, J. He, and S. Tao, “Dynamic self-diffraction in MoS(2) nanoflake solutions,” Opt. Express 23(5), 5875–5887 (2015).
    [Crossref] [PubMed]
  26. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
    [Crossref] [PubMed]
  27. H. J. Chen and K. D. Zhu, “Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS2 nanoresonator,” J. Opt. Soc. Am. B 31(7), 1684–1690 (2014).
    [Crossref]
  28. S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
    [Crossref]
  29. J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83(11), 115445 (2011).
    [Crossref]
  30. Y. He, C. Jiang, B. Chen, J. J. Li, and K. D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett. 37(14), 2943–2945 (2012).
    [Crossref] [PubMed]
  31. B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, “Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships,” J. Appl. Phys. 103(10), 103511 (2008).
    [Crossref]
  32. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
  33. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  34. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
    [Crossref]
  35. J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.
    [Crossref]
  36. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]

2017 (1)

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95(2), 023810 (2017).
[Crossref]

2016 (3)

S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, and L. Kulyuk, “Nonlinear optical responses in two- dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5 W0.5S2,” Opt. Express 24(18), 20685–20695 (2016).
[Crossref] [PubMed]

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Y. He and M. Jiang, “Ultrasensitive mass sensing method based on slow light in cavity optomechanics,” Appl. Phys. Express 9(5), 052205 (2016).
[Crossref]

2015 (3)

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92(2), 023846 (2015).
[Crossref]

S. Xiao, B. Lv, L. Wu, M. Zhu, J. He, and S. Tao, “Dynamic self-diffraction in MoS(2) nanoflake solutions,” Opt. Express 23(5), 5875–5887 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (5)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

2012 (5)

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Small-signal amplifier based on single-layer MoS2,” Appl. Phys. Lett. 101(4), 043103 (2012).
[Crossref]

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
[Crossref] [PubMed]

J. J. Li and K. D. Zhu, “Tunable slow and fast light device based on a carbon nanotube resonator,” Opt. Express 20(6), 5840–5848 (2012).
[Crossref] [PubMed]

Y. He, C. Jiang, B. Chen, J. J. Li, and K. D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett. 37(14), 2943–2945 (2012).
[Crossref] [PubMed]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

2011 (6)

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83(11), 115445 (2011).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

E. Cabrera-Granado, E. Díaz, and O. G. Calderón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107(1), 013901 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

2010 (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

2008 (1)

B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, “Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships,” J. Appl. Phys. 103(10), 103511 (2008).
[Crossref]

2006 (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

2005 (2)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2002 (1)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1981 (1)

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Agraït, N.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
[Crossref] [PubMed]

Ajayan, P. M.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

Akram, M. J.

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95(2), 023810 (2017).
[Crossref]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92(2), 023846 (2015).
[Crossref]

Anghel, S.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bencheikh, K.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Berner, N. C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Bertolazzi, S.

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Bikorimana, S.

Blau, W. J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

Cabrera-Granado, E.

E. Cabrera-Granado, E. Díaz, and O. G. Calderón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107(1), 013901 (2011).
[Crossref] [PubMed]

Calderón, O. G.

E. Cabrera-Granado, E. Díaz, and O. G. Calderón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107(1), 013901 (2011).
[Crossref] [PubMed]

Castellanos-Gomez, A.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
[Crossref] [PubMed]

Ceballos, F.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chen, B.

Chen, H. J.

Chen, Z.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Chiashi, S.

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Cui, Q.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

Cui, X.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Dai, J.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Dharmaprakash, S. M.

B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, “Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships,” J. Appl. Phys. 103(10), 103511 (2008).
[Crossref]

Díaz, E.

E. Cabrera-Granado, E. Díaz, and O. G. Calderón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107(1), 013901 (2011).
[Crossref] [PubMed]

Dong, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Dorsinville, R.

Duesberg, G. S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Dumeige, Y.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Feng, Y.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Féron, P.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Ghafoor, F.

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95(2), 023810 (2017).
[Crossref]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Gross, R.

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

Gu, B.

B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, “Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships,” J. Appl. Phys. 103(10), 103511 (2008).
[Crossref]

Guillemé, P.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Harter, D. J.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, J.

He, K.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

He, W.

J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83(11), 115445 (2011).
[Crossref]

He, Y.

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Hocke, F.

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Huebl, H.

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

Huet, V.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Ji, W.

B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, “Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships,” J. Appl. Phys. 103(10), 103511 (2008).
[Crossref]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Jiang, C.

Jiang, M.

Y. He and M. Jiang, “Ultrasensitive mass sensing method based on slow light in cavity optomechanics,” Appl. Phys. Express 9(5), 052205 (2016).
[Crossref]

Kato, Y. K.

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Khan, M. M.

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95(2), 023810 (2017).
[Crossref]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92(2), 023846 (2015).
[Crossref]

Kippenberg, T. J.

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Small-signal amplifier based on single-layer MoS2,” Appl. Phys. Lett. 101(4), 043103 (2012).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

Kulyuk, L.

Kumar, N.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

Lama, P.

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Levenson, A.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Li, J. J.

Li, Y.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Lou, J.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

Lv, B.

Ma, P. C.

Mak, K. F.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Maruyama, S.

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

Marx, A.

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

McEvoy, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Micu, A.

Mitioglu, A.

Moritsubo, S.

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

Mortier, M.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Murai, T.

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Najmaei, S.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

Narum, P.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

O’Brien, M.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Patil, P. S.

B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, “Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships,” J. Appl. Phys. 103(10), 103511 (2008).
[Crossref]

Poole, C.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

Poot, M.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
[Crossref] [PubMed]

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Small-signal amplifier based on single-layer MoS2,” Appl. Phys. Lett. 101(4), 043103 (2012).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Rasoloniaina, A.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Raymer, M. G.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Rochard, P.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Rubio-Bollinger, G.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Saif, F.

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95(2), 023810 (2017).
[Crossref]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92(2), 023846 (2015).
[Crossref]

Schliesser, A.

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Shan, J.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Shimada, T.

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

Steele, G. A.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
[Crossref] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Tao, S.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

van der Zant, H. S. J.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
[Crossref] [PubMed]

Walser, A.

Wang, J.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Wang, K.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Whitwick, M. B.

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Small-signal amplifier based on single-layer MoS2,” Appl. Phys. Lett. 101(4), 043103 (2012).
[Crossref]

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Winters, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Wu, L.

Xiao, D.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Xiao, S.

Xiao, Y.

Yacomotti, A.

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

Yao, W.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Yasukochi, S.

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

Yim, C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Yu, Y. F.

Zeng, H.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Zhang, H.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, L.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, Z. M.

Zhao, H.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

Zhu, K. D.

Zhu, M.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

ACS Nano (3)

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2.,” ACS Nano 5(12), 9703–9709 (2011).
[Crossref] [PubMed]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24(6), 772–775 (2012).
[Crossref] [PubMed]

Appl. Phys. Express (1)

Y. He and M. Jiang, “Ultrasensitive mass sensing method based on slow light in cavity optomechanics,” Appl. Phys. Express 9(5), 052205 (2016).
[Crossref]

Appl. Phys. Lett. (1)

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Small-signal amplifier based on single-layer MoS2,” Appl. Phys. Lett. 101(4), 043103 (2012).
[Crossref]

J. Appl. Phys. (1)

B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, “Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships,” J. Appl. Phys. 103(10), 103511 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.,” Nano Lett. 13(6), 2931–2936 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]

Nature (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Photonics News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Phys. Rev. A (3)

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92(2), 023846 (2015).
[Crossref]

M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95(2), 023810 (2017).
[Crossref]

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981).
[Crossref]

Phys. Rev. B (3)

S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B 84(12), 121409 (2011).
[Crossref]

J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83(11), 115445 (2011).
[Crossref]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87(16), 161403 (2013).
[Crossref]

Phys. Rev. Lett. (5)

E. Cabrera-Granado, E. Díaz, and O. G. Calderón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107(1), 013901 (2011).
[Crossref] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, “Millisecond photon lifetime in a slow-light microcavity,” Phys. Rev. Lett. 116(13), 133902 (2016).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Other (3)

J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic representation of monolayer MoS2 suspended on a Si/SiO2 substrate by an optical pump-probe technique [31]. The system is driven by a strong pump laser and detected by a weak probe laser. (b) The level scheme of a localized exciton interacting with the phonons in the MoS2 NR.

Fig. 2
Fig. 2

The probe absorption Imχ(1) (a) and dispersion Reχ(1) (b) spectra (in units of Π1) as a function of the probe-pump detuning δ for different exciton-pump detunings Δpu. (c) The energy levels of the exciton dressed with the phonon modes of the MoS2 NR. Each energy level is split into a doublet with a separation Ω'. TP refers to the three-photon resonance, RL represents the Rayleigh resonance, and AC denotes the ac-Stark resonance.

Fig. 3
Fig. 3

The group velocity index ng (in units of Π2) as a function of the exciton-pump detuning Δ pu for Ipu = 3.32 mW/cm2 (a) and Ipu = 6.64 mW/cm2 (b). The insets show the magnification of these remarkable regions around Δ pu = δ = ± ωn.

Fig. 4
Fig. 4

The group velocity index ng (in units of Π2) as a function of the pumping intensity Ipu for Δ pu = –ωn (a), Δ pu = 0 (b), and Δ pu = ωn (c) when the coupling between the exciton and the phonons turns on or off.

Fig. 5
Fig. 5

The absorption Imχ(1) (a) and dispersion Reχ(1) (c) spectra as a function of the probe-pump detuning δ for a different pumping intensity Ipu. Figures 5(b) and 5(d) show the magnification of the absorption and dispersion spectra around the anti-Stokes sideband (δ = –ωn), respectively. The other parameters used are g = 0.08 and Δ pu = –ωn.

Fig. 6
Fig. 6

The absorption Imχ(1) (a) and dispersion Reχ(1) (c) spectra as a function of the probe-pump detuning δ for a different coupling strength g. Figures 6(b) and 6(d) show the magnification of the absorption and dispersion spectra around the anti-Stokes sideband (δ = –ωn), respectively. The other parameters used are Δ pu = –ωn and Ipu = 3.65 mW/cm2.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H = Δ p u σ z + ω n b + b + g ω n σ z ( b + + b ) μ E p u ( σ 10 + σ 01 ) μ ( σ 10 E p r e i δ t + σ 01 E p r * e i δ t ) ,
p ˙ = ( Γ 2 + i Δ p u ) p i g ω n p Ξ i Ω w i μ E p r w e i δ t ,
w ˙ = Γ 1 ( w + 1 ) + 2 i Ω ( p * p ) + 2 i μ ( p * E p r e i δ t p E p r * e i δ t ) ,
Ξ ¨ + γ n Ξ ˙ + ω n 2 Ξ = ω n 2 g w ,
χ ( 1 ) = N μ p 1 ε 0 E p r = N μ 2 ε 0 Γ 2 χ 0 ( 1 ) = Π 1 χ 0 ( 1 ) ,
χ 0 ( 1 ) = ( C 2 C 1 ) C 3 Γ 2 ( 1 + C 1 C 4 C 2 C 4 ) w 0 + p 0 * Γ 2 ( 1 + C 1 C 4 C 2 C 4 ) Ω ,
Γ 1 ( w 0 + 1 ) [ Γ 2 2 + ( Δ p u g g 0 w 0 ) 2 ] + 4 Ω 2 Γ 2 w 0 = 0 ,
v g = c n + ω p r ( d n / d ω p r ) ,
c v g 1 = 2 π Re ( χ ( 1 ) ) ω p r = ω 10 + 2 π ω p r Re ( d χ ( 1 ) d ω p r ) ω p r = ω 10 ,
n g = c v g 1 = Π 2 Γ 2 Re ( d χ 0 ( 1 ) d ω p r ) ω p r = ω 10 .

Metrics