Abstract

Ammonia detection technologies are very important in environment monitoring. However, most existing technologies are complex and expensive, which limit the useful range of real-time application. Here, we propose a highly sensitive and selective optical sensor for detection of ammonia (NH3) based on liquid crystals (LCs). This optical sensor is realized through the competitive binding between ammonia and liquid crystals on chitosan-Cu2+ that decorated on glass substrate. We achieve a broad detection range of ammonia from 50 ppm to 1250 ppm, with a low detection limit of 16.6 ppm. This sensor is low-cost, simple, fast, and highly sensitive and selective for detection of ammonia. The proposal LC sensing method can be a sensitive detection platform for other molecule monitors such as proteins, DNAs and other heavy metal ions by modifying sensing molecules.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal

Yu-Cheng Hsiao, Yu-Chien Sung, Mon-Juan Lee, and Wei Lee
Biomed. Opt. Express 6(12) 5033-5038 (2015)

Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator

Nebiyu A. Yebo, Sreeprasanth Pulinthanathu Sree, Elisabeth Levrau, Christophe Detavernier, Zeger Hens, Johan A. Martens, and Roel Baets
Opt. Express 20(11) 11855-11862 (2012)

High sensitivity sol-gel silica coated optical fiber sensor for detection of ammonia in water

Dejun Liu, Wei Han, Arun Kumar Mallik, Jinhui Yuan, Chongxiu Yu, Gerald Farrell, Yuliya Semenova, and Qiang Wu
Opt. Express 24(21) 24179-24187 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, and M. Dincă, “Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites,” J. Am. Chem. Soc. 135(36), 13326–13329 (2013).
    [Crossref] [PubMed]
  2. R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
    [PubMed]
  3. T. Moise, J. M. Flores, and Y. Rudich, “Optical properties of secondary organic aerosols and their changes by chemical processes,” Chem. Rev. 115(10), 4400–4439 (2015).
    [Crossref] [PubMed]
  4. C. S. Liang, F. K. Duan, K. B. He, and Y. L. Ma, “Review on recent progress in observations, source identifications and countermeasures of PM2.5,” Environ. Int. 86, 150–170 (2016).
    [Crossref] [PubMed]
  5. R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
    [Crossref] [PubMed]
  6. L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
    [Crossref] [PubMed]
  7. M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chem. Int. Ed. Engl. 54(14), 4349–4352 (2015).
    [Crossref] [PubMed]
  8. E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
    [Crossref] [PubMed]
  9. P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuators B Chem. 161(1), 989–999 (2012).
    [Crossref]
  10. R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, “Chemically reduced graphene oxide for ammonia detection at room temperature,” ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013).
    [Crossref] [PubMed]
  11. S. Chakraborty, J. T. Gleeson, A. Jakli, and S. Sprunt, “A comparison of short-range molecular order in bent-core and rod-like nematic liquid crystals,” Soft Matter 9(6), 1817–1824 (2013).
    [Crossref]
  12. R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
    [Crossref] [PubMed]
  13. J. Deng, W. Liang, and J. Fang, “Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications,” ACS Appl. Mater. Interfaces 8(6), 3928–3932 (2016).
    [Crossref] [PubMed]
  14. H. Shahsavan, S. M. Salili, A. Jákli, and B. Zhao, “Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers,” Adv. Mater. 27(43), 6828–6833 (2015).
    [Crossref] [PubMed]
  15. A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
    [Crossref] [PubMed]
  16. Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
    [Crossref] [PubMed]
  17. S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
    [Crossref] [PubMed]
  18. S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
    [Crossref] [PubMed]
  19. A. Hussain, A. S. Pina, and A. C. A. Roque, “Bio-recognition and detection using liquid crystals,” Biosens. Bioelectron. 25(1), 1–8 (2009).
    [Crossref] [PubMed]
  20. R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
    [Crossref]
  21. C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
    [Crossref] [PubMed]
  22. R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
    [Crossref] [PubMed]
  23. S. S. Sridharamurthy, K. D. Cadwell, and N. L. Abbott, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 1–4 (2007).
  24. K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
    [Crossref] [PubMed]
  25. M. L. Bungabong, P. B. Ong, and K. L. Yang, “Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor,” Sens. Actuators B Chem. 148(2), 420–426 (2010).
    [Crossref]
  26. W. Suginta, P. Khunkaewla, and A. Schulte, “Electrochemical biosensor applications of polysaccharides chitin and chitosan,” Chem. Rev. 113(7), 5458–5479 (2013).
    [Crossref] [PubMed]
  27. X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
    [Crossref] [PubMed]
  28. E. S. Dragan, D. F. Apopei Loghin, and A. I. Cocarta, “Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads,” ACS Appl. Mater. Interfaces 6(19), 16577–16592 (2014).
    [Crossref] [PubMed]
  29. S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
    [Crossref] [PubMed]
  30. Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
    [Crossref]

2016 (3)

C. S. Liang, F. K. Duan, K. B. He, and Y. L. Ma, “Review on recent progress in observations, source identifications and countermeasures of PM2.5,” Environ. Int. 86, 150–170 (2016).
[Crossref] [PubMed]

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

J. Deng, W. Liang, and J. Fang, “Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications,” ACS Appl. Mater. Interfaces 8(6), 3928–3932 (2016).
[Crossref] [PubMed]

2015 (4)

H. Shahsavan, S. M. Salili, A. Jákli, and B. Zhao, “Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers,” Adv. Mater. 27(43), 6828–6833 (2015).
[Crossref] [PubMed]

M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chem. Int. Ed. Engl. 54(14), 4349–4352 (2015).
[Crossref] [PubMed]

T. Moise, J. M. Flores, and Y. Rudich, “Optical properties of secondary organic aerosols and their changes by chemical processes,” Chem. Rev. 115(10), 4400–4439 (2015).
[Crossref] [PubMed]

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref] [PubMed]

2014 (5)

E. S. Dragan, D. F. Apopei Loghin, and A. I. Cocarta, “Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads,” ACS Appl. Mater. Interfaces 6(19), 16577–16592 (2014).
[Crossref] [PubMed]

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

2013 (9)

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, “Chemically reduced graphene oxide for ammonia detection at room temperature,” ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013).
[Crossref] [PubMed]

S. Chakraborty, J. T. Gleeson, A. Jakli, and S. Sprunt, “A comparison of short-range molecular order in bent-core and rod-like nematic liquid crystals,” Soft Matter 9(6), 1817–1824 (2013).
[Crossref]

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, and M. Dincă, “Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites,” J. Am. Chem. Soc. 135(36), 13326–13329 (2013).
[Crossref] [PubMed]

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
[Crossref] [PubMed]

R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
[Crossref]

W. Suginta, P. Khunkaewla, and A. Schulte, “Electrochemical biosensor applications of polysaccharides chitin and chitosan,” Chem. Rev. 113(7), 5458–5479 (2013).
[Crossref] [PubMed]

2012 (1)

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuators B Chem. 161(1), 989–999 (2012).
[Crossref]

2010 (1)

M. L. Bungabong, P. B. Ong, and K. L. Yang, “Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor,” Sens. Actuators B Chem. 148(2), 420–426 (2010).
[Crossref]

2009 (2)

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

A. Hussain, A. S. Pina, and A. C. A. Roque, “Bio-recognition and detection using liquid crystals,” Biosens. Bioelectron. 25(1), 1–8 (2009).
[Crossref] [PubMed]

2008 (1)

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[Crossref] [PubMed]

2007 (2)

E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
[Crossref] [PubMed]

S. S. Sridharamurthy, K. D. Cadwell, and N. L. Abbott, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 1–4 (2007).

2006 (1)

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref] [PubMed]

2001 (1)

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[Crossref] [PubMed]

Abbasi, R.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Abbaszade, G.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Abbott, N. L.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

S. S. Sridharamurthy, K. D. Cadwell, and N. L. Abbott, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 1–4 (2007).

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref] [PubMed]

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[Crossref] [PubMed]

Aksay, I. A.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Alf, M. E.

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref] [PubMed]

An, Z.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Andreola, F.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Apopei Loghin, D. F.

E. S. Dragan, D. F. Apopei Loghin, and A. I. Cocarta, “Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads,” ACS Appl. Mater. Interfaces 6(19), 16577–16592 (2014).
[Crossref] [PubMed]

Balasubramaniyan, V.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Baldo, M.

N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, and M. Dincă, “Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites,” J. Am. Chem. Soc. 135(36), 13326–13329 (2013).
[Crossref] [PubMed]

Baltensperger, U.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Baumgarten, M.

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

Beer, L.

E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
[Crossref] [PubMed]

Bekyarova, E.

E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
[Crossref] [PubMed]

Borah, J. S.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

Bozzetti, C.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Bruns, E. A.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Bungabong, M. L.

M. L. Bungabong, P. B. Ong, and K. L. Yang, “Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor,” Sens. Actuators B Chem. 148(2), 420–426 (2010).
[Crossref]

Cabrera, N.

E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
[Crossref] [PubMed]

Cadwell, K. D.

S. S. Sridharamurthy, K. D. Cadwell, and N. L. Abbott, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 1–4 (2007).

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref] [PubMed]

Campbell, M. G.

M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chem. Int. Ed. Engl. 54(14), 4349–4352 (2015).
[Crossref] [PubMed]

Canonaco, F.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Cao, J. J.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Carlton, R. J.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Chakraborty, S.

S. Chakraborty, J. T. Gleeson, A. Jakli, and S. Sprunt, “A comparison of short-range molecular order in bent-core and rod-like nematic liquid crystals,” Soft Matter 9(6), 1817–1824 (2013).
[Crossref]

Chang, H. H.

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref] [PubMed]

Chang, J.

S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
[Crossref] [PubMed]

Chen, C. H.

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref] [PubMed]

Chen, J.

S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
[Crossref] [PubMed]

Chi, L.

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

Ciarelli, G.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Cocarta, A. I.

E. S. Dragan, D. F. Apopei Loghin, and A. I. Cocarta, “Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads,” ACS Appl. Mater. Interfaces 6(19), 16577–16592 (2014).
[Crossref] [PubMed]

Coey, J. M. D.

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuators B Chem. 161(1), 989–999 (2012).
[Crossref]

Cozzolino, A. F.

N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, and M. Dincă, “Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites,” J. Am. Chem. Soc. 135(36), 13326–13329 (2013).
[Crossref] [PubMed]

Crippa, M.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Cui, S.

S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
[Crossref] [PubMed]

Daellenbach, K. R.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Dasari, V.

R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
[Crossref]

De Chiara, F.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Deng, J.

J. Deng, W. Liang, and J. Fang, “Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications,” ACS Appl. Mater. Interfaces 8(6), 3928–3932 (2016).
[Crossref] [PubMed]

Dhara, S.

R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
[Crossref]

Dinca, M.

M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chem. Int. Ed. Engl. 54(14), 4349–4352 (2015).
[Crossref] [PubMed]

N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, and M. Dincă, “Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites,” J. Am. Chem. Soc. 135(36), 13326–13329 (2013).
[Crossref] [PubMed]

Dragan, E. S.

E. S. Dragan, D. F. Apopei Loghin, and A. I. Cocarta, “Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads,” ACS Appl. Mater. Interfaces 6(19), 16577–16592 (2014).
[Crossref] [PubMed]

Duan, F. K.

C. S. Liang, F. K. Duan, K. B. He, and Y. L. Ma, “Review on recent progress in observations, source identifications and countermeasures of PM2.5,” Environ. Int. 86, 150–170 (2016).
[Crossref] [PubMed]

El Haddad, I.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Fang, J.

J. Deng, W. Liang, and J. Fang, “Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications,” ACS Appl. Mater. Interfaces 8(6), 3928–3932 (2016).
[Crossref] [PubMed]

Feng, L. L.

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

Flores, J. M.

T. Moise, J. M. Flores, and Y. Rudich, “Optical properties of secondary organic aerosols and their changes by chemical processes,” Chem. Rev. 115(10), 4400–4439 (2015).
[Crossref] [PubMed]

Fuchs, H.

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

Gao, P.

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

Ghosh, R.

R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, “Chemically reduced graphene oxide for ammonia detection at room temperature,” ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013).
[Crossref] [PubMed]

Gleeson, J. T.

S. Chakraborty, J. T. Gleeson, A. Jakli, and S. Sprunt, “A comparison of short-range molecular order in bent-core and rod-like nematic liquid crystals,” Soft Matter 9(6), 1817–1824 (2013).
[Crossref]

Guha, P. K.

R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, “Chemically reduced graphene oxide for ammonia detection at room temperature,” ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013).
[Crossref] [PubMed]

Gupta, K. C.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

Haddon, R. C.

E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
[Crossref] [PubMed]

Han, Y.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

He, K. B.

C. S. Liang, F. K. Duan, K. B. He, and Y. L. Ma, “Review on recent progress in observations, source identifications and countermeasures of PM2.5,” Environ. Int. 86, 150–170 (2016).
[Crossref] [PubMed]

Ho, K. F.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Huang, R. J.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Hunter, J. T.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Hussain, A.

A. Hussain, A. S. Pina, and A. C. A. Roque, “Bio-recognition and detection using liquid crystals,” Biosens. Bioelectron. 25(1), 1–8 (2009).
[Crossref] [PubMed]

Itkis, M. E.

E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
[Crossref] [PubMed]

Jakli, A.

S. Chakraborty, J. T. Gleeson, A. Jakli, and S. Sprunt, “A comparison of short-range molecular order in bent-core and rod-like nematic liquid crystals,” Soft Matter 9(6), 1817–1824 (2013).
[Crossref]

Jákli, A.

H. Shahsavan, S. M. Salili, A. Jákli, and B. Zhao, “Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers,” Adv. Mater. 27(43), 6828–6833 (2015).
[Crossref] [PubMed]

Jalan, R.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Kalinina, I.

E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
[Crossref] [PubMed]

Kang, I. K.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

Kang, X.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Khetan, V.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Khunkaewla, P.

W. Suginta, P. Khunkaewla, and A. Schulte, “Electrochemical biosensor applications of polysaccharides chitin and chitosan,” Chem. Rev. 113(7), 5458–5479 (2013).
[Crossref] [PubMed]

Kim, Y. K.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

Lee, A. S. Y.

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref] [PubMed]

Lee, J. H.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

Li, G. D.

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

Li, L.

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

Liang, C. S.

C. S. Liang, F. K. Duan, K. B. He, and Y. L. Ma, “Review on recent progress in observations, source identifications and countermeasures of PM2.5,” Environ. Int. 86, 150–170 (2016).
[Crossref] [PubMed]

Liang, W.

J. Deng, W. Liang, and J. Fang, “Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications,” ACS Appl. Mater. Interfaces 8(6), 3928–3932 (2016).
[Crossref] [PubMed]

Liao, S.

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

Lin, Y.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Lin, Y. C.

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref] [PubMed]

Liu, J.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Liu, S. F.

M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chem. Int. Ed. Engl. 54(14), 4349–4352 (2015).
[Crossref] [PubMed]

Liu, Y. P.

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

Lu, N.

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

Ma, Y. L.

C. S. Liang, F. K. Duan, K. B. He, and Y. L. Ma, “Review on recent progress in observations, source identifications and countermeasures of PM2.5,” Environ. Int. 86, 150–170 (2016).
[Crossref] [PubMed]

Madathil, R.

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuators B Chem. 161(1), 989–999 (2012).
[Crossref]

Malago, M.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Manda, R.

R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
[Crossref]

Mao, S.

S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
[Crossref] [PubMed]

Midya, A.

R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, “Chemically reduced graphene oxide for ammonia detection at room temperature,” ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013).
[Crossref] [PubMed]

Miller, D. S.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Moise, T.

T. Moise, J. M. Flores, and Y. Rudich, “Optical properties of secondary organic aerosols and their changes by chemical processes,” Chem. Rev. 115(10), 4400–4439 (2015).
[Crossref] [PubMed]

Mookerjee, R. P.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Müllen, K.

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

Mushenheim, P. C.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Ong, P. B.

M. L. Bungabong, P. B. Ong, and K. L. Yang, “Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor,” Sens. Actuators B Chem. 148(2), 420–426 (2010).
[Crossref]

Paik, P.

R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
[Crossref]

Park, S. Y.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

Piazzalunga, A.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Pieber, S. M.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Pina, A. S.

A. Hussain, A. S. Pina, and A. C. A. Roque, “Bio-recognition and detection using liquid crystals,” Biosens. Bioelectron. 25(1), 1–8 (2009).
[Crossref] [PubMed]

Pinzani, M.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Platt, S. M.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Prévôt, A. S. H.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Price, A. D.

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[Crossref] [PubMed]

Qi, Q.

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

Rasna, M. V.

R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
[Crossref]

Ray, S. K.

R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, “Chemically reduced graphene oxide for ammonia detection at room temperature,” ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013).
[Crossref] [PubMed]

Reineke, S.

N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, and M. Dincă, “Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites,” J. Am. Chem. Soc. 135(36), 13326–13329 (2013).
[Crossref] [PubMed]

Rombouts, K.

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

Roque, A. C. A.

A. Hussain, A. S. Pina, and A. C. A. Roque, “Bio-recognition and detection using liquid crystals,” Biosens. Bioelectron. 25(1), 1–8 (2009).
[Crossref] [PubMed]

Rudich, Y.

T. Moise, J. M. Flores, and Y. Rudich, “Optical properties of secondary organic aerosols and their changes by chemical processes,” Chem. Rev. 115(10), 4400–4439 (2015).
[Crossref] [PubMed]

Salili, S. M.

H. Shahsavan, S. M. Salili, A. Jákli, and B. Zhao, “Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers,” Adv. Mater. 27(43), 6828–6833 (2015).
[Crossref] [PubMed]

Santra, S.

R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, “Chemically reduced graphene oxide for ammonia detection at room temperature,” ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013).
[Crossref] [PubMed]

Sathyanarayana, P.

R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
[Crossref]

Schnelle-Kreis, J.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Schulte, A.

W. Suginta, P. Khunkaewla, and A. Schulte, “Electrochemical biosensor applications of polysaccharides chitin and chitosan,” Chem. Rev. 113(7), 5458–5479 (2013).
[Crossref] [PubMed]

Schwartz, D. K.

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[Crossref] [PubMed]

Schwikowski, M.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Shah, R. R.

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[Crossref] [PubMed]

Shahsavan, H.

H. Shahsavan, S. M. Salili, A. Jákli, and B. Zhao, “Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers,” Adv. Mater. 27(43), 6828–6833 (2015).
[Crossref] [PubMed]

Sheberla, D.

M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chem. Int. Ed. Engl. 54(14), 4349–4352 (2015).
[Crossref] [PubMed]

Shen, G.

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

Shustova, N. B.

N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, and M. Dincă, “Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites,” J. Am. Chem. Soc. 135(36), 13326–13329 (2013).
[Crossref] [PubMed]

Slowik, J. G.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Smalyukh, I. I.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Sprunt, S.

S. Chakraborty, J. T. Gleeson, A. Jakli, and S. Sprunt, “A comparison of short-range molecular order in bent-core and rod-like nematic liquid crystals,” Soft Matter 9(6), 1817–1824 (2013).
[Crossref]

Sridharamurthy, S. S.

S. S. Sridharamurthy, K. D. Cadwell, and N. L. Abbott, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 1–4 (2007).

Stamenov, P.

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuators B Chem. 161(1), 989–999 (2012).
[Crossref]

Suginta, W.

W. Suginta, P. Khunkaewla, and A. Schulte, “Electrochemical biosensor applications of polysaccharides chitin and chitosan,” Chem. Rev. 113(7), 5458–5479 (2013).
[Crossref] [PubMed]

Swager, T. M.

M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chem. Int. Ed. Engl. 54(14), 4349–4352 (2015).
[Crossref] [PubMed]

Szidat, S.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Tan, H.

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

Tan, L. N.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Wang, J.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Wang, P. P.

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

Wen, Z.

S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
[Crossref] [PubMed]

Wolf, R.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Wu, C.

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

Wu, H.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Wu, Y.

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

Wu, Z.

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

Xuan, R. F.

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

Yang, K. L.

M. L. Bungabong, P. B. Ong, and K. L. Yang, “Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor,” Sens. Actuators B Chem. 148(2), 420–426 (2010).
[Crossref]

Yang, S.

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

Yoon, S. H.

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

Yu, R.

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

Yuan, Y.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Zhang, Y.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
[Crossref] [PubMed]

Zhao, B.

H. Shahsavan, S. M. Salili, A. Jákli, and B. Zhao, “Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers,” Adv. Mater. 27(43), 6828–6833 (2015).
[Crossref] [PubMed]

Zhao, J.

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

Zhou, L. J.

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

Zimmermann, R.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Zotter, P.

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

ACS Appl. Mater. Interfaces (3)

J. Deng, W. Liang, and J. Fang, “Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications,” ACS Appl. Mater. Interfaces 8(6), 3928–3932 (2016).
[Crossref] [PubMed]

R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, “Chemically reduced graphene oxide for ammonia detection at room temperature,” ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013).
[Crossref] [PubMed]

E. S. Dragan, D. F. Apopei Loghin, and A. I. Cocarta, “Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads,” ACS Appl. Mater. Interfaces 6(19), 16577–16592 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

H. Shahsavan, S. M. Salili, A. Jákli, and B. Zhao, “Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers,” Adv. Mater. 27(43), 6828–6833 (2015).
[Crossref] [PubMed]

L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, “High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film,” Adv. Mater. 25(25), 3419–3425 (2013).
[Crossref] [PubMed]

Anal. Chem. (2)

S. Yang, C. Wu, H. Tan, Y. Wu, S. Liao, Z. Wu, G. Shen, and R. Yu, “Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions,” Anal. Chem. 85(1), 14–18 (2013).
[Crossref] [PubMed]

C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (1)

S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, and J. Chen, “Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection,” Analyst (Lond.) 138(10), 2877–2882 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing,” Angew. Chem. Int. Ed. Engl. 54(14), 4349–4352 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Manda, V. Dasari, P. Sathyanarayana, M. V. Rasna, P. Paik, and S. Dhara, “Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres,” Appl. Phys. Lett. 103(103), 141910 (2013).
[Crossref]

Biosens. Bioelectron. (2)

A. Hussain, A. S. Pina, and A. C. A. Roque, “Bio-recognition and detection using liquid crystals,” Biosens. Bioelectron. 25(1), 1–8 (2009).
[Crossref] [PubMed]

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref] [PubMed]

Chem. Rev. (2)

W. Suginta, P. Khunkaewla, and A. Schulte, “Electrochemical biosensor applications of polysaccharides chitin and chitosan,” Chem. Rev. 113(7), 5458–5479 (2013).
[Crossref] [PubMed]

T. Moise, J. M. Flores, and Y. Rudich, “Optical properties of secondary organic aerosols and their changes by chemical processes,” Chem. Rev. 115(10), 4400–4439 (2015).
[Crossref] [PubMed]

Environ. Int. (1)

C. S. Liang, F. K. Duan, K. B. He, and Y. L. Ma, “Review on recent progress in observations, source identifications and countermeasures of PM2.5,” Environ. Int. 86, 150–170 (2016).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, and M. Dincă, “Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites,” J. Am. Chem. Soc. 135(36), 13326–13329 (2013).
[Crossref] [PubMed]

E. Bekyarova, I. Kalinina, M. E. Itkis, L. Beer, N. Cabrera, and R. C. Haddon, “Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection,” J. Am. Chem. Soc. 129(35), 10700–10706 (2007).
[Crossref] [PubMed]

A. D. Price and D. K. Schwartz, “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” J. Am. Chem. Soc. 130(26), 8188–8194 (2008).
[Crossref] [PubMed]

J. Hepatol. (1)

R. Jalan, F. De Chiara, V. Balasubramaniyan, F. Andreola, V. Khetan, M. Malago, M. Pinzani, R. P. Mookerjee, and K. Rombouts, “Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension,” J. Hepatol. 64(4), 823–833 (2016).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” J. Phys. Chem. B 110(51), 26081–26088 (2006).
[Crossref] [PubMed]

Langmuir (1)

S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, “Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells,” Langmuir 30(35), 10668–10677 (2014).
[Crossref] [PubMed]

Liq. Cryst. Rev. (1)

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Nano Lett. (1)

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Nature (1)

R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, “High secondary aerosol contribution to particulate pollution during haze events in China,” Nature 514(7521), 218–222 (2014).
[PubMed]

Science (1)

R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science 293(5533), 1296–1299 (2001).
[Crossref] [PubMed]

Sens. Actuators B Chem. (3)

M. L. Bungabong, P. B. Ong, and K. L. Yang, “Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor,” Sens. Actuators B Chem. 148(2), 420–426 (2010).
[Crossref]

Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, Y. P. Liu, and G. D. Li, “SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties,” Sens. Actuators B Chem. 194, 440–446 (2014).
[Crossref]

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuators B Chem. 161(1), 989–999 (2012).
[Crossref]

Smart Mater. Struct. (1)

S. S. Sridharamurthy, K. D. Cadwell, and N. L. Abbott, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct. 17(1), 1–4 (2007).

Soft Matter (1)

S. Chakraborty, J. T. Gleeson, A. Jakli, and S. Sprunt, “A comparison of short-range molecular order in bent-core and rod-like nematic liquid crystals,” Soft Matter 9(6), 1817–1824 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fabrication process of LC based optical sensor for ammonia detection.

Fig. 2
Fig. 2

Optical appearances viewed under crossed polarizers of LC cells decorated (a) with Cu2+ and (b) without Cu2+.

Fig. 3
Fig. 3

Optical images of LC based optical sensor exposed in ammonia for (a) 0 s (b) 10 s, (c) 25 s, (d) 50 s, (e) 75 s, and (f) 100 s.

Fig. 4
Fig. 4

Response of average gray value in different condition: (a) with increase of time from 0 to 90 h in the presence of 50, 100, 175, 250 and 350 mmol/L of Cu2+; (b) different relative humidity from 30% to 90% in the system.

Fig. 5
Fig. 5

Response curve and optical images of the sensor for ammonia after it exposed in different concentration: 50 ppm, 100 ppm, 250 ppm, 500 ppm, 750 ppm, 1000 ppm and 1250 ppm.

Fig. 6
Fig. 6

The selectivity of LC based optical sensor exposed in different gases: 800 ppm H2S, 800 ppm SO2, 800 ppm Cl2, 800 ppm CO2, 800 ppm CO and 250 ppm NH3.

Fig. 7
Fig. 7

Optical images of the Cu2+ (a) dissolved in LC and (b) undissolved in LC.

Metrics