Abstract

The effects of ambient pressure on the phenomena in laser welding of pure titanium were observed by X-ray transmission in situ apparatus and high speed camera. The penetration depth increased to 18 mm as the ambient pressure decreased to 0.1 kPa. The depth increment from 100 to 0.1 kPa is nearly 200%, far higher than that of mild steel (60%). Both the backward expansion at keyhole tip and the high-speed spatters could be suppressed by decreasing ambient pressure to 1 kPa or lower. The spatter number decreased at least 4 times as the ambient pressure decreased from 10 to 0.1 kPa. It could be deduced that the melt flow decelerated with decreasing ambient pressure. Relevant mechanisms were discussed by the metallic vapor ejection from keyhole and the melt flow types in molten pool.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial distribution characteristics of plasma plume on attenuation of laser radiation under subatmospheric pressure

Yan Luo, Xinhua Tang, Fenggui Lu, Qintao Chen, and Haichao Cui
Appl. Opt. 54(5) 1090-1096 (2015)

Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser

Mingjun Zhang, Genyu Chen, Yu Zhou, and Shichun Li
Opt. Express 21(17) 19997-20004 (2013)

Closed-loop power and focus control of laser welding for full-penetration monitoring

Fabrice Bardin, Adolfo Cobo, Jose M. Lopez-Higuera, Olivier Collin, Pascal Aubry, Thierry Dubois, Mats Högström, Per Nylen, Peter Jonsson, Julian D. C. Jones, and Duncan P. Hand
Appl. Opt. 44(1) 13-21 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Verwaerde, R. Fabbro, and G. Deshors, “Experimental study of continuous CO2 laser welding at subatmospheric pressures,” J. Appl. Phys. 78(5), 2981–2984 (1995).
    [Crossref]
  2. S. Katayama, Y. Kobayashi, M. Mizutani, and A. Matsunawa, “Effect of vacuum on penetration and defects in laser welding,” J. Laser Appl. 13(5), 187–192 (2001).
    [Crossref]
  3. S. Katayama, A. Yohei, M. Mizutani, and Y. Kawahito, “Development of deep penetration welding technology with high brightness laser under vacuum,” Phys. Procedia 12, 75–80 (2011).
    [Crossref]
  4. S. Katayama, Y. Kawahito, and M. Mizutani, “Latest progress in performance and understanding of laser welding,” Phys. Procedia 39, 8–16 (2012).
    [Crossref]
  5. U. Reisgen, S. Olschok, and S. Longerich, “Laser beam welding in vacuum–a process variation in comparison with electron beam welding,” in Proceedings of International Congress on Applications of Lasers and Electro-Optics, (Laser Institute of America, 2010), paper 1304.
  6. S. Yang, J. Wang, B. Carlson, and J. Zhang, “Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration,” Weld. J. 92(7), 197–204 (2013).
  7. U. Reisgen, S. Olschok, S. Jakobs, and M. Mücke, “Welding with the Laser Beam in Vacuum,” Laser Tech. J. 12(2), 42–46 (2015).
    [Crossref]
  8. Y. Luo, X. Tang, and F. Lu, “Experimental study on deep penetrated laser welding under local subatmospheric pressure,” Int. J. Adv. Manuf. Technol. 73(5), 699–706 (2014).
    [Crossref]
  9. S. Pang, K. Hirano, R. Fabbro, and T. Jiang, “Explanation of penetration depth variation during laser welding under variable ambient pressure,” J. Laser Appl. 27(2), 022007 (2015).
    [Crossref]
  10. R. Boyer, “An overview on the use of titanium in the aerospace industry,” Mater. Sci. Eng. A 213(1–2), 103–114 (1996).
    [Crossref]
  11. J. W. Elmer, J. Vaja, and H. D. Carlton, “The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercial pure titanium and nickel,” Weld. J. 95, 419–430 (2016).
  12. Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys. 40(19), 5854–5859 (2007).
    [Crossref]
  13. C. Börner, K. Dilger, V. Rominger, T. Harrer, T. Krüssel, and T. Löwer, “Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser,” in Proceedings of International Congress on Applications of Lasers and Electro-Optics, (Laser Institute of America, 2011) paper 1604.
  14. C. Börner, T. Krüssel, and K. Dilger, “Process characteristics of laser beam welding at reduced ambient pressure,” Proc. SPIE 8603, 86030M (2013).
    [Crossref]
  15. R. Fabbro, K. Hirano, and S. Pang, “Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure,” J. Laser Appl. 28(2), 022427 (2016).
    [Crossref]
  16. F. Cardarelli, Materials Handbook: A Concise Desktop Reference (Springer Science & Business Media, 2014).
  17. M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
    [Crossref]
  18. H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
    [Crossref]
  19. Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
    [Crossref]
  20. A. F. H. Kaplan and J. Powell, “Spatter in laser welding,” J. Laser Appl. 23(3), 032005 (2011).
    [Crossref]
  21. M. Zhang, G. Chen, Y. Zhou, S. Li, and H. Deng, “Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate,” Appl. Surf. Sci. 280, 868–875 (2013).
    [Crossref]

2017 (1)

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

2016 (2)

R. Fabbro, K. Hirano, and S. Pang, “Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure,” J. Laser Appl. 28(2), 022427 (2016).
[Crossref]

J. W. Elmer, J. Vaja, and H. D. Carlton, “The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercial pure titanium and nickel,” Weld. J. 95, 419–430 (2016).

2015 (4)

M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

U. Reisgen, S. Olschok, S. Jakobs, and M. Mücke, “Welding with the Laser Beam in Vacuum,” Laser Tech. J. 12(2), 42–46 (2015).
[Crossref]

S. Pang, K. Hirano, R. Fabbro, and T. Jiang, “Explanation of penetration depth variation during laser welding under variable ambient pressure,” J. Laser Appl. 27(2), 022007 (2015).
[Crossref]

2014 (1)

Y. Luo, X. Tang, and F. Lu, “Experimental study on deep penetrated laser welding under local subatmospheric pressure,” Int. J. Adv. Manuf. Technol. 73(5), 699–706 (2014).
[Crossref]

2013 (3)

S. Yang, J. Wang, B. Carlson, and J. Zhang, “Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration,” Weld. J. 92(7), 197–204 (2013).

C. Börner, T. Krüssel, and K. Dilger, “Process characteristics of laser beam welding at reduced ambient pressure,” Proc. SPIE 8603, 86030M (2013).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, S. Li, and H. Deng, “Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate,” Appl. Surf. Sci. 280, 868–875 (2013).
[Crossref]

2012 (1)

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest progress in performance and understanding of laser welding,” Phys. Procedia 39, 8–16 (2012).
[Crossref]

2011 (2)

S. Katayama, A. Yohei, M. Mizutani, and Y. Kawahito, “Development of deep penetration welding technology with high brightness laser under vacuum,” Phys. Procedia 12, 75–80 (2011).
[Crossref]

A. F. H. Kaplan and J. Powell, “Spatter in laser welding,” J. Laser Appl. 23(3), 032005 (2011).
[Crossref]

2007 (1)

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys. 40(19), 5854–5859 (2007).
[Crossref]

2001 (1)

S. Katayama, Y. Kobayashi, M. Mizutani, and A. Matsunawa, “Effect of vacuum on penetration and defects in laser welding,” J. Laser Appl. 13(5), 187–192 (2001).
[Crossref]

1996 (1)

R. Boyer, “An overview on the use of titanium in the aerospace industry,” Mater. Sci. Eng. A 213(1–2), 103–114 (1996).
[Crossref]

1995 (1)

A. Verwaerde, R. Fabbro, and G. Deshors, “Experimental study of continuous CO2 laser welding at subatmospheric pressures,” J. Appl. Phys. 78(5), 2981–2984 (1995).
[Crossref]

Börner, C.

C. Börner, T. Krüssel, and K. Dilger, “Process characteristics of laser beam welding at reduced ambient pressure,” Proc. SPIE 8603, 86030M (2013).
[Crossref]

Boyer, R.

R. Boyer, “An overview on the use of titanium in the aerospace industry,” Mater. Sci. Eng. A 213(1–2), 103–114 (1996).
[Crossref]

Carlson, B.

S. Yang, J. Wang, B. Carlson, and J. Zhang, “Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration,” Weld. J. 92(7), 197–204 (2013).

Carlton, H. D.

J. W. Elmer, J. Vaja, and H. D. Carlton, “The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercial pure titanium and nickel,” Weld. J. 95, 419–430 (2016).

Chen, C.

M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Chen, G.

M. Zhang, G. Chen, Y. Zhou, S. Li, and H. Deng, “Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate,” Appl. Surf. Sci. 280, 868–875 (2013).
[Crossref]

Deng, H.

M. Zhang, G. Chen, Y. Zhou, S. Li, and H. Deng, “Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate,” Appl. Surf. Sci. 280, 868–875 (2013).
[Crossref]

Deshors, G.

A. Verwaerde, R. Fabbro, and G. Deshors, “Experimental study of continuous CO2 laser welding at subatmospheric pressures,” J. Appl. Phys. 78(5), 2981–2984 (1995).
[Crossref]

Dilger, K.

C. Börner, T. Krüssel, and K. Dilger, “Process characteristics of laser beam welding at reduced ambient pressure,” Proc. SPIE 8603, 86030M (2013).
[Crossref]

Doi, Y.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Elmer, J. W.

J. W. Elmer, J. Vaja, and H. D. Carlton, “The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercial pure titanium and nickel,” Weld. J. 95, 419–430 (2016).

Fabbro, R.

R. Fabbro, K. Hirano, and S. Pang, “Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure,” J. Laser Appl. 28(2), 022427 (2016).
[Crossref]

S. Pang, K. Hirano, R. Fabbro, and T. Jiang, “Explanation of penetration depth variation during laser welding under variable ambient pressure,” J. Laser Appl. 27(2), 022007 (2015).
[Crossref]

A. Verwaerde, R. Fabbro, and G. Deshors, “Experimental study of continuous CO2 laser welding at subatmospheric pressures,” J. Appl. Phys. 78(5), 2981–2984 (1995).
[Crossref]

Fujii, H.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Gao, M.

M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Guo, L. B.

M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Hirano, K.

R. Fabbro, K. Hirano, and S. Pang, “Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure,” J. Laser Appl. 28(2), 022427 (2016).
[Crossref]

S. Pang, K. Hirano, R. Fabbro, and T. Jiang, “Explanation of penetration depth variation during laser welding under variable ambient pressure,” J. Laser Appl. 27(2), 022007 (2015).
[Crossref]

Hu, M.

M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Jakobs, S.

U. Reisgen, S. Olschok, S. Jakobs, and M. Mücke, “Welding with the Laser Beam in Vacuum,” Laser Tech. J. 12(2), 42–46 (2015).
[Crossref]

Jiang, T.

S. Pang, K. Hirano, R. Fabbro, and T. Jiang, “Explanation of penetration depth variation during laser welding under variable ambient pressure,” J. Laser Appl. 27(2), 022007 (2015).
[Crossref]

Kaplan, A. F. H.

A. F. H. Kaplan and J. Powell, “Spatter in laser welding,” J. Laser Appl. 23(3), 032005 (2011).
[Crossref]

Katayama, S.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest progress in performance and understanding of laser welding,” Phys. Procedia 39, 8–16 (2012).
[Crossref]

S. Katayama, A. Yohei, M. Mizutani, and Y. Kawahito, “Development of deep penetration welding technology with high brightness laser under vacuum,” Phys. Procedia 12, 75–80 (2011).
[Crossref]

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys. 40(19), 5854–5859 (2007).
[Crossref]

S. Katayama, Y. Kobayashi, M. Mizutani, and A. Matsunawa, “Effect of vacuum on penetration and defects in laser welding,” J. Laser Appl. 13(5), 187–192 (2001).
[Crossref]

Kawahito, Y.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest progress in performance and understanding of laser welding,” Phys. Procedia 39, 8–16 (2012).
[Crossref]

S. Katayama, A. Yohei, M. Mizutani, and Y. Kawahito, “Development of deep penetration welding technology with high brightness laser under vacuum,” Phys. Procedia 12, 75–80 (2011).
[Crossref]

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys. 40(19), 5854–5859 (2007).
[Crossref]

Kawakami, H.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Kobayashi, Y.

S. Katayama, Y. Kobayashi, M. Mizutani, and A. Matsunawa, “Effect of vacuum on penetration and defects in laser welding,” J. Laser Appl. 13(5), 187–192 (2001).
[Crossref]

Krüssel, T.

C. Börner, T. Krüssel, and K. Dilger, “Process characteristics of laser beam welding at reduced ambient pressure,” Proc. SPIE 8603, 86030M (2013).
[Crossref]

Li, S.

M. Zhang, G. Chen, Y. Zhou, S. Li, and H. Deng, “Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate,” Appl. Surf. Sci. 280, 868–875 (2013).
[Crossref]

Longerich, S.

U. Reisgen, S. Olschok, and S. Longerich, “Laser beam welding in vacuum–a process variation in comparison with electron beam welding,” in Proceedings of International Congress on Applications of Lasers and Electro-Optics, (Laser Institute of America, 2010), paper 1304.

Lu, F.

Y. Luo, X. Tang, and F. Lu, “Experimental study on deep penetrated laser welding under local subatmospheric pressure,” Int. J. Adv. Manuf. Technol. 73(5), 699–706 (2014).
[Crossref]

Luo, Y.

Y. Luo, X. Tang, and F. Lu, “Experimental study on deep penetrated laser welding under local subatmospheric pressure,” Int. J. Adv. Manuf. Technol. 73(5), 699–706 (2014).
[Crossref]

Matsunawa, A.

S. Katayama, Y. Kobayashi, M. Mizutani, and A. Matsunawa, “Effect of vacuum on penetration and defects in laser welding,” J. Laser Appl. 13(5), 187–192 (2001).
[Crossref]

Mizutani, M.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest progress in performance and understanding of laser welding,” Phys. Procedia 39, 8–16 (2012).
[Crossref]

S. Katayama, A. Yohei, M. Mizutani, and Y. Kawahito, “Development of deep penetration welding technology with high brightness laser under vacuum,” Phys. Procedia 12, 75–80 (2011).
[Crossref]

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys. 40(19), 5854–5859 (2007).
[Crossref]

S. Katayama, Y. Kobayashi, M. Mizutani, and A. Matsunawa, “Effect of vacuum on penetration and defects in laser welding,” J. Laser Appl. 13(5), 187–192 (2001).
[Crossref]

Mücke, M.

U. Reisgen, S. Olschok, S. Jakobs, and M. Mücke, “Welding with the Laser Beam in Vacuum,” Laser Tech. J. 12(2), 42–46 (2015).
[Crossref]

Nakamura, H.

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

Nakata, K.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Nishimoto, K.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

Olschok, S.

U. Reisgen, S. Olschok, S. Jakobs, and M. Mücke, “Welding with the Laser Beam in Vacuum,” Laser Tech. J. 12(2), 42–46 (2015).
[Crossref]

U. Reisgen, S. Olschok, and S. Longerich, “Laser beam welding in vacuum–a process variation in comparison with electron beam welding,” in Proceedings of International Congress on Applications of Lasers and Electro-Optics, (Laser Institute of America, 2010), paper 1304.

Pang, S.

R. Fabbro, K. Hirano, and S. Pang, “Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure,” J. Laser Appl. 28(2), 022427 (2016).
[Crossref]

S. Pang, K. Hirano, R. Fabbro, and T. Jiang, “Explanation of penetration depth variation during laser welding under variable ambient pressure,” J. Laser Appl. 27(2), 022007 (2015).
[Crossref]

Powell, J.

A. F. H. Kaplan and J. Powell, “Spatter in laser welding,” J. Laser Appl. 23(3), 032005 (2011).
[Crossref]

Reisgen, U.

U. Reisgen, S. Olschok, S. Jakobs, and M. Mücke, “Welding with the Laser Beam in Vacuum,” Laser Tech. J. 12(2), 42–46 (2015).
[Crossref]

U. Reisgen, S. Olschok, and S. Longerich, “Laser beam welding in vacuum–a process variation in comparison with electron beam welding,” in Proceedings of International Congress on Applications of Lasers and Electro-Optics, (Laser Institute of America, 2010), paper 1304.

Tanaka, M.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Tang, X.

Y. Luo, X. Tang, and F. Lu, “Experimental study on deep penetrated laser welding under local subatmospheric pressure,” Int. J. Adv. Manuf. Technol. 73(5), 699–706 (2014).
[Crossref]

Uemura, Y.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Vaja, J.

J. W. Elmer, J. Vaja, and H. D. Carlton, “The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercial pure titanium and nickel,” Weld. J. 95, 419–430 (2016).

Verwaerde, A.

A. Verwaerde, R. Fabbro, and G. Deshors, “Experimental study of continuous CO2 laser welding at subatmospheric pressures,” J. Appl. Phys. 78(5), 2981–2984 (1995).
[Crossref]

Wang, J.

S. Yang, J. Wang, B. Carlson, and J. Zhang, “Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration,” Weld. J. 92(7), 197–204 (2013).

Wang, Z. M.

M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Yang, S.

S. Yang, J. Wang, B. Carlson, and J. Zhang, “Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration,” Weld. J. 92(7), 197–204 (2013).

Yohei, A.

S. Katayama, A. Yohei, M. Mizutani, and Y. Kawahito, “Development of deep penetration welding technology with high brightness laser under vacuum,” Phys. Procedia 12, 75–80 (2011).
[Crossref]

Zeng, X. Y.

M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Zhang, J.

S. Yang, J. Wang, B. Carlson, and J. Zhang, “Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration,” Weld. J. 92(7), 197–204 (2013).

Zhang, M.

M. Zhang, G. Chen, Y. Zhou, S. Li, and H. Deng, “Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate,” Appl. Surf. Sci. 280, 868–875 (2013).
[Crossref]

Zhou, Y.

M. Zhang, G. Chen, Y. Zhou, S. Li, and H. Deng, “Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate,” Appl. Surf. Sci. 280, 868–875 (2013).
[Crossref]

Appl. Surf. Sci. (2)

M. Gao, C. Chen, M. Hu, L. B. Guo, Z. M. Wang, and X. Y. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, S. Li, and H. Deng, “Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate,” Appl. Surf. Sci. 280, 868–875 (2013).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

Y. Luo, X. Tang, and F. Lu, “Experimental study on deep penetrated laser welding under local subatmospheric pressure,” Int. J. Adv. Manuf. Technol. 73(5), 699–706 (2014).
[Crossref]

J. Appl. Phys. (1)

A. Verwaerde, R. Fabbro, and G. Deshors, “Experimental study of continuous CO2 laser welding at subatmospheric pressures,” J. Appl. Phys. 78(5), 2981–2984 (1995).
[Crossref]

J. Laser Appl. (5)

S. Katayama, Y. Kobayashi, M. Mizutani, and A. Matsunawa, “Effect of vacuum on penetration and defects in laser welding,” J. Laser Appl. 13(5), 187–192 (2001).
[Crossref]

S. Pang, K. Hirano, R. Fabbro, and T. Jiang, “Explanation of penetration depth variation during laser welding under variable ambient pressure,” J. Laser Appl. 27(2), 022007 (2015).
[Crossref]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

R. Fabbro, K. Hirano, and S. Pang, “Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure,” J. Laser Appl. 28(2), 022427 (2016).
[Crossref]

A. F. H. Kaplan and J. Powell, “Spatter in laser welding,” J. Laser Appl. 23(3), 032005 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys. 40(19), 5854–5859 (2007).
[Crossref]

Laser Tech. J. (1)

U. Reisgen, S. Olschok, S. Jakobs, and M. Mücke, “Welding with the Laser Beam in Vacuum,” Laser Tech. J. 12(2), 42–46 (2015).
[Crossref]

Mater. Sci. Eng. A (1)

R. Boyer, “An overview on the use of titanium in the aerospace industry,” Mater. Sci. Eng. A 213(1–2), 103–114 (1996).
[Crossref]

Phys. Procedia (2)

S. Katayama, A. Yohei, M. Mizutani, and Y. Kawahito, “Development of deep penetration welding technology with high brightness laser under vacuum,” Phys. Procedia 12, 75–80 (2011).
[Crossref]

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest progress in performance and understanding of laser welding,” Phys. Procedia 39, 8–16 (2012).
[Crossref]

Proc. SPIE (1)

C. Börner, T. Krüssel, and K. Dilger, “Process characteristics of laser beam welding at reduced ambient pressure,” Proc. SPIE 8603, 86030M (2013).
[Crossref]

Weld. Int. (1)

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Weld. J. (2)

S. Yang, J. Wang, B. Carlson, and J. Zhang, “Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration,” Weld. J. 92(7), 197–204 (2013).

J. W. Elmer, J. Vaja, and H. D. Carlton, “The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercial pure titanium and nickel,” Weld. J. 95, 419–430 (2016).

Other (3)

U. Reisgen, S. Olschok, and S. Longerich, “Laser beam welding in vacuum–a process variation in comparison with electron beam welding,” in Proceedings of International Congress on Applications of Lasers and Electro-Optics, (Laser Institute of America, 2010), paper 1304.

C. Börner, K. Dilger, V. Rominger, T. Harrer, T. Krüssel, and T. Löwer, “Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser,” in Proceedings of International Congress on Applications of Lasers and Electro-Optics, (Laser Institute of America, 2011) paper 1604.

F. Cardarelli, Materials Handbook: A Concise Desktop Reference (Springer Science & Business Media, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic drawing of experimental setup

Fig. 2
Fig. 2

Effects of ambient pressure on surface morphologies at welding speed of 0.5 m min−1

Fig. 3
Fig. 3

Effects of ambient pressure on cross-sectional morphologies

Fig. 4
Fig. 4

Effects of ambient pressure on weld penetration depth

Fig. 5
Fig. 5

Effects of ambient pressure on spectral properties of plasma plume with welding speed of 0.5 m min−1

Fig. 6
Fig. 6

Effects of ambient pressure on keyhole behaviors, observed by X-ray in situ apparatus, (a) welding speed of 0.5 m min−1, (b) welding speed of 1.0 m min−1.

Fig. 7
Fig. 7

Effects of ambient pressure on keyhole depth (a) and keyhole diameter at 20% depth (b), observed by X-ray in situ apparatus.

Fig. 8
Fig. 8

Effects of ambient pressure on the behaviors of molten pool and plasma plume at welding speed 0.5 m min−1, (a) 0.1 kPa (b) 1 kPa, (c) 10 kPa

Fig. 9
Fig. 9

Effects of ambient pressure on the behaviors of molten pool and plasma plume at welding speed 3 m min−1, (a) 0.1 kPa (b) 1 kPa, (c) 10 kPa

Fig. 10
Fig. 10

Effects of ambient pressure on spatter ejecting distribution at different welding speed, (a) 0.5 m min−1 (b) 1.0 m min−1, (c) 3.0 m min−1

Fig. 11
Fig. 11

Schematic drawings of melt flow in molten pool of laser welding with 6 kW power, observed by Ref [18], (a) welding speed of 3 m min−1, (b) welding speed of 9 m min−1.

Tables (1)

Tables Icon

Table 1 Welding Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N e =2.16× 10 17 p 1/2 T e 1/4 exp( -45.65× 10 3 T e )
q= 6.3K( T s - T 0 ) Ln( 2.25k vr )

Metrics