Abstract

Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-quality lithium niobate photonic crystal nanocavities

Hanxiao Liang, Rui Luo, Yang He, Haowei Jiang, and Qiang Lin
Optica 4(10) 1251-1258 (2017)

Thermo-optic effects in on-chip lithium niobate microdisk resonators

Jie Wang, Bowen Zhu, Zhenzhong Hao, Fang Bo, Xiaolei Wang, Feng Gao, Yigang Li, Guoquan Zhang, and Jingjun Xu
Opt. Express 24(19) 21869-21879 (2016)

Fast response of photorefraction in lithium niobate microresonators

Haowei Jiang, Rui Luo, Hanxiao Liang, Xianfeng Chen, Yuping Chen, and Qiang Lin
Opt. Lett. 42(17) 3267-3270 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  2. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
    [Crossref]
  3. V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
  4. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal selfstability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]
  5. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22, 459–465 (2005).
    [Crossref]
  6. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2005).
    [Crossref]
  7. W.-S. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett. 32, 3104–3106 (2007).
    [Crossref] [PubMed]
  8. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16, 6285–6301 (2008).
    [Crossref] [PubMed]
  9. L. He, Y.-F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
    [Crossref] [PubMed]
  10. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18, 26695–26703 (2010).
    [Crossref] [PubMed]
  11. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
    [Crossref]
  12. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and Ivan Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
    [Crossref] [PubMed]
  13. Y. Deng, R. Flores-Flores, R. K. Jain, and M. Hossein-Zadeh, “Thermo-optomechanical oscillations in high-Q ZBLAN microspheres,” Opt. Lett. 38, 4413–4416 (2013).
    [Crossref] [PubMed]
  14. D. M. Abrams, A. Slawik, and K. Srinivasan, “Nonlinear oscillations and bifurcations in silicon photonic microresonators,” Phys. Rev. Lett. 112, 123901 (2014).
    [Crossref] [PubMed]
  15. J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
    [Crossref]
  16. W. Weng, J. D. Anstie, P. Abbott, B. Fan, T. M. Stace, and A. N. Luiten, “Stabilization of a dynamically unstable opto-thermo-mechanical oscillator,” Phys. Rev. A 91, 063801 (2015).
    [Crossref]
  17. Q. Wang, Y. Wang, Z. Guo, J. Wu, and Y. Wu, “Thermal oscillatory behavior analysis and dynamic modulation of refractive index in microspherical resonator,” Opt. Lett. 40, 1607–1610 (2015).
    [Crossref] [PubMed]
  18. S. Diallo, G. Lin, and Y. K. Chembo, “Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators,” Opt. Lett. 40, 3834–3837 (2015).
    [Crossref] [PubMed]
  19. H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
    [Crossref]
  20. J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24, 21869–21879 (2016).
    [Crossref] [PubMed]
  21. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  22. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref] [PubMed]
  23. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
    [Crossref] [PubMed]
  24. W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
    [Crossref] [PubMed]
  25. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  26. L Moretti, M. Lodice, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
    [Crossref]
  27. Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
    [Crossref]
  28. A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
    [Crossref]
  29. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications 1, 2 (Springer, New York, 2006).
    [Crossref]
  30. X. Sun, R. Luo, X.-C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017). Detailed discussion and formaliztion of thermo-optic nonlinear effect can be found in this paper.
    [Crossref]
  31. P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intenties in doped lithium-niobate crystals,” J. Appl. Phys. 101, 116105 (2007).
    [Crossref]
  32. H. Liang, W. C. Jiang, X. B. Sun, X.-C. Zhang, and Q. Lin, “Themo-optic oscillation dynamics in a high-Q lithium niobate microresonator,” Proc. Conf. Lasers and Electro-Optics (CLEO), paper STu1E.4 (2016).

2017 (1)

X. Sun, R. Luo, X.-C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017). Detailed discussion and formaliztion of thermo-optic nonlinear effect can be found in this paper.
[Crossref]

2016 (3)

H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
[Crossref]

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref] [PubMed]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24, 21869–21879 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (3)

D. M. Abrams, A. Slawik, and K. Srinivasan, “Nonlinear oscillations and bifurcations in silicon photonic microresonators,” Phys. Rev. Lett. 112, 123901 (2014).
[Crossref] [PubMed]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

2013 (1)

2012 (2)

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and Ivan Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
[Crossref] [PubMed]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2007 (2)

W.-S. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett. 32, 3104–3106 (2007).
[Crossref] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intenties in doped lithium-niobate crystals,” J. Appl. Phys. 101, 116105 (2007).
[Crossref]

2006 (1)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

2005 (3)

2004 (1)

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

1992 (1)

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

1969 (1)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[Crossref]

Abbott, P.

W. Weng, J. D. Anstie, P. Abbott, B. Fan, T. M. Stace, and A. N. Luiten, “Stabilization of a dynamically unstable opto-thermo-mechanical oscillator,” Phys. Rev. A 91, 063801 (2015).
[Crossref]

Abrams, D. M.

D. M. Abrams, A. Slawik, and K. Srinivasan, “Nonlinear oscillations and bifurcations in silicon photonic microresonators,” Phys. Rev. Lett. 112, 123901 (2014).
[Crossref] [PubMed]

Anstie, J. D.

W. Weng, J. D. Anstie, P. Abbott, B. Fan, T. M. Stace, and A. N. Luiten, “Stabilization of a dynamically unstable opto-thermo-mechanical oscillator,” Phys. Rev. A 91, 063801 (2015).
[Crossref]

Atikian, H. A.

Baker, C.

Bigot, L.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

Bo, F.

Borselli, M.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Brunstein, M.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

Bulla, D.

Burek, M. J.

Carmon, T.

Chembo, Y. K.

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Chipouline, A.

Choi, D.-Y.

Corte, F. G. D.

L Moretti, M. Lodice, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[Crossref]

Cristiani, I.

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intenties in doped lithium-niobate crystals,” J. Appl. Phys. 101, 116105 (2007).
[Crossref]

Degiorgio, V.

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intenties in doped lithium-niobate crystals,” J. Appl. Phys. 101, 116105 (2007).
[Crossref]

Deng, Y.

Deych, L.

Diallo, S.

Ducci, S.

Eggleton, B. J.

Egorov, O.

Fan, B.

W. Weng, J. D. Anstie, P. Abbott, B. Fan, T. M. Stace, and A. N. Luiten, “Stabilization of a dynamically unstable opto-thermo-mechanical oscillator,” Phys. Rev. A 91, 063801 (2015).
[Crossref]

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Favero, Ivan

Flores-Flores, R.

Fomin, A. E.

Gai, X.

Gao, F.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Gorodetskii, M. L.

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Gorodetsky, M. L.

A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22, 459–465 (2005).
[Crossref]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Grillet, C.

Grudinin, I. S.

Gu, T.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Guo, Z.

Hao, Z.

He, L.

Hossein-Zadeh, M.

Huang, I-C.

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22, 459–465 (2005).
[Crossref]

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Itobe, H.

H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
[Crossref]

Jain, R. K.

Jiang, W. C.

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref] [PubMed]

H. Liang, W. C. Jiang, X. B. Sun, X.-C. Zhang, and Q. Lin, “Themo-optic oscillation dynamics in a high-Q lithium niobate microresonator,” Proc. Conf. Lasers and Electro-Optics (CLEO), paper STu1E.4 (2016).

Johnson, T. J.

Kakinuma, Y.

H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
[Crossref]

Kangawa, H.

H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
[Crossref]

Kim, Y. S.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[Crossref]

Kokanyan, E. P.

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intenties in doped lithium-niobate crystals,” J. Appl. Phys. 101, 116105 (2007).
[Crossref]

Kwong, D.-L.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Lederer, F.

Lee, M. W.

Leo, G.

Levenson, A.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

Li, J.

Li, W.

Li, Y.

Liang, H.

H. Liang, W. C. Jiang, X. B. Sun, X.-C. Zhang, and Q. Lin, “Themo-optic oscillation dynamics in a high-Q lithium niobate microresonator,” Proc. Conf. Lasers and Electro-Optics (CLEO), paper STu1E.4 (2016).

Lin, G.

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Lin, Q.

X. Sun, R. Luo, X.-C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017). Detailed discussion and formaliztion of thermo-optic nonlinear effect can be found in this paper.
[Crossref]

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref] [PubMed]

H. Liang, W. C. Jiang, X. B. Sun, X.-C. Zhang, and Q. Lin, “Themo-optic oscillation dynamics in a high-Q lithium niobate microresonator,” Proc. Conf. Lasers and Electro-Optics (CLEO), paper STu1E.4 (2016).

Lin, Z.

Lo, G.-Q.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Lodice, M.

L Moretti, M. Lodice, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[Crossref]

Loncar, M.

Luiten, A. N.

W. Weng, J. D. Anstie, P. Abbott, B. Fan, T. M. Stace, and A. N. Luiten, “Stabilization of a dynamically unstable opto-thermo-mechanical oscillator,” Phys. Rev. A 91, 063801 (2015).
[Crossref]

Luo, R.

X. Sun, R. Luo, X.-C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017). Detailed discussion and formaliztion of thermo-optic nonlinear effect can be found in this paper.
[Crossref]

Luther-Davies, B.

Madden, S.

Mägi, E.

Maleki, L.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Minzioni, P.

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intenties in doped lithium-niobate crystals,” J. Appl. Phys. 101, 116105 (2007).
[Crossref]

Mizumoto, Y.

H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
[Crossref]

Monat, C.

Moretti, L

L Moretti, M. Lodice, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[Crossref]

Nakagawa, Y.

H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
[Crossref]

Ozdemir, S. K.

Painter, O.

Park, W.-S.

Parrain, D.

Pertsch, T.

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Raineri, F.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

Rendina, I.

L Moretti, M. Lodice, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[Crossref]

Sagnes, I.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Schmidt, C.

Slawik, A.

D. M. Abrams, A. Slawik, and K. Srinivasan, “Nonlinear oscillations and bifurcations in silicon photonic microresonators,” Phys. Rev. Lett. 112, 123901 (2014).
[Crossref] [PubMed]

Smith, R. T.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[Crossref]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Srinivasan, K.

D. M. Abrams, A. Slawik, and K. Srinivasan, “Nonlinear oscillations and bifurcations in silicon photonic microresonators,” Phys. Rev. Lett. 112, 123901 (2014).
[Crossref] [PubMed]

Stace, T. M.

W. Weng, J. D. Anstie, P. Abbott, B. Fan, T. M. Stace, and A. N. Luiten, “Stabilization of a dynamically unstable opto-thermo-mechanical oscillator,” Phys. Rev. A 91, 063801 (2015).
[Crossref]

Stapfner, S.

Stark, P.

Strekalov, D.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Sun, X.

X. Sun, R. Luo, X.-C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017). Detailed discussion and formaliztion of thermo-optic nonlinear effect can be found in this paper.
[Crossref]

Sun, X. B.

H. Liang, W. C. Jiang, X. B. Sun, X.-C. Zhang, and Q. Lin, “Themo-optic oscillation dynamics in a high-Q lithium niobate microresonator,” Proc. Conf. Lasers and Electro-Optics (CLEO), paper STu1E.4 (2016).

Tanabe, T.

H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
[Crossref]

Tomljenovic-Hanic, S.

Tünnermann, A.

Vahala, K. J.

Venkataraman, V.

Wan, S.

Wang, C.

Wang, H.

Wang, J.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, Q.

Wang, X.

Wang, Y.

Weig, E. M.

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Weng, W.

W. Weng, J. D. Anstie, P. Abbott, B. Fan, T. M. Stace, and A. N. Luiten, “Stabilization of a dynamically unstable opto-thermo-mechanical oscillator,” Phys. Rev. A 91, 063801 (2015).
[Crossref]

Wong, C. W.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Wu, J.

Wu, Y.

Xiao, Y.-F.

Xu, J.

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Yacomotti, A. M.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

Yang, J.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Yang, L.

Yu, M.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Zhang, G.

Zhang, X.-C.

X. Sun, R. Luo, X.-C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017). Detailed discussion and formaliztion of thermo-optic nonlinear effect can be found in this paper.
[Crossref]

H. Liang, W. C. Jiang, X. B. Sun, X.-C. Zhang, and Q. Lin, “Themo-optic oscillation dynamics in a high-Q lithium niobate microresonator,” Proc. Conf. Lasers and Electro-Optics (CLEO), paper STu1E.4 (2016).

Zheng, J.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

Zhu, B.

Zhu, J.

AIP Advance (1)

H. Itobe, Y. Nakagawa, Y. Mizumoto, H. Kangawa, Y. Kakinuma, and T. Tanabe, “Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization,” AIP Advance 6, 055116 (2016).
[Crossref]

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Appl. Phys. Lett. (1)

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104, 061104 (2014).
[Crossref]

J. Appl. Phys. (3)

L Moretti, M. Lodice, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[Crossref]

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[Crossref]

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intenties in doped lithium-niobate crystals,” J. Appl. Phys. 101, 116105 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Opt. Express (9)

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2005).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16, 6285–6301 (2008).
[Crossref] [PubMed]

L. He, Y.-F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18, 26695–26703 (2010).
[Crossref] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and Ivan Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20, 29076–29089 (2012).
[Crossref] [PubMed]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref] [PubMed]

J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, “Thermo-optic effects in on-chip lithium niobate microdisk resonators,” Opt. Express 24, 21869–21879 (2016).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal selfstability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Phys. Rev. A (3)

W. Weng, J. D. Anstie, P. Abbott, B. Fan, T. M. Stace, and A. N. Luiten, “Stabilization of a dynamically unstable opto-thermo-mechanical oscillator,” Phys. Rev. A 91, 063801 (2015).
[Crossref]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Fast thermo-optical cxcitability in a two-dimensional photonic crystal,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

X. Sun, R. Luo, X.-C. Zhang, and Q. Lin, “Squeezing the fundamental temperature fluctuations of a high-Q microresonator,” Phys. Rev. A 95, 023822 (2017). Detailed discussion and formaliztion of thermo-optic nonlinear effect can be found in this paper.
[Crossref]

Phys. Rev. B (1)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Phys. Rev. Lett. (1)

D. M. Abrams, A. Slawik, and K. Srinivasan, “Nonlinear oscillations and bifurcations in silicon photonic microresonators,” Phys. Rev. Lett. 112, 123901 (2014).
[Crossref] [PubMed]

Sci. Rep. (2)

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Rep. 6, 36920 (2016).
[Crossref] [PubMed]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Other (2)

H. Liang, W. C. Jiang, X. B. Sun, X.-C. Zhang, and Q. Lin, “Themo-optic oscillation dynamics in a high-Q lithium niobate microresonator,” Proc. Conf. Lasers and Electro-Optics (CLEO), paper STu1E.4 (2016).

P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications 1, 2 (Springer, New York, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup, where the inset shows an optical microscopic image of the device coupled to a tapered optical fiber for light delivery into and out of the device. VOA: variable optical attenuator. MZI: Mach-Zehnder interferometer. (b) Laser scanned cavity transmission spectrum for the quasi-TE polarization. The inset shows the detailed transmission spectrum of the cavity mode at 1511.10 nm, with the experimental data in blue and the theoretical fitting in red. A and B denotes two cavity modes nearby.

Fig. 2
Fig. 2

Laser-scanned cavity transmission spectrum as a function of input optical power. Left panel: Experimentally recorded traces. (a) shows the sweeping voltage to piezoelectrically drive the laser cavity mirror. Accordingly, the laser wavelength is swept back and forth periodically with a scanning rate of ∼6 nm/s. In (b)–(g), the red arrows indicate the overall blue shifting of the cavity resonance at 1511.10 nm. The green arrows indicate the corresponding blue shifting of a nearby mode, Mode A (see Fig. 1(b)). Light blue arrows indicate the nonlinear dynamics on Mode B (see Fig. 1(b)). Right panel: Theoretically modeled traces based on Eqs. (1)(3). Detailed parameters are given in the text.

Fig. 3
Fig. 3

Time-dependent waveform of cavity transmission at an input optical power of 77.7 μW. The laser wavelength was set at four different wavelengths, as schematically illustrated on the right. Left panel: Experimentally recorded waveforms. Right Panel: Theoretical modeling based on Eqs. (1)(3), with a fitted ηE = 2.73 MV/(m · fJ · s).

Fig. 4
Fig. 4

Time-dependent waveform of cavity transmission at an input optical power of 155 μW. The four laser wavelength settings are schematically illustrated on the right. Left panel: Experimentally recorded waveforms. Right Panel: Theoretical modeling based on Eqs. (1)(3), with a fitted ηE = 2.09 MV/(m · fJ · s).

Fig. 5
Fig. 5

Time-dependent waveform of cavity transmission at an input optical power of 309 μW. The four laser wavelength settings are schematically illustrated on the right. Left panel: Experimentally recorded waveforms. In (d), the four numbers, I – IV, denote four time regions in which the cavity transmission shows different temporal dynamics. Right Panel: Theoretical modeling based on Eqs. (1)(3), with a fitted ηE = 1.62 MV/(m · fJ · s).

Fig. 6
Fig. 6

Schematic of the time-dependent cavity resonance shift induced by the competition between the thermo-optic nonlinear process and the photorefractive process. Regions I–IV correspond to the four regions indicated in Fig. 5(d).

Fig. 7
Fig. 7

Nonlinear optical dynamics of the device, numerically modeled by Eqs. (1)(3). The input optical power is 155 μW same as Fig. 4. (a) Waveform of cavity transmission, directly corresponding to Fig. 4(b). (b) Temperature variation Δ of the device induced by the photothermal heating. (c) Space-charge electric field Ēsp induced by the photorefractive effect. (d) and (e) The corresponding frequency shifts of the cavity resonance, induced by the thermo-optic effect (blue curve) and the photo-refractive effect (red curve), respectively. The green curve shows the net resonance frequency shift under the combination of these two effects. The plotted frequency shift is normalized by the linewidth, Γt, of the loaded cavity. A positive (negative) value infers a blue (red) shift of the resonance frequency (compared with the resonance frequency of the passive cavity in the absence of nonlinear effects). The dashed line indicates the laser frequency (with respect to the passive cavity resonance.) The four schematics on the top illustrate the laser-cavity detunings at the four typical points of the pulsing waveform. Note that the laser wavelength is fixed in the schematics, while the cavity resonance is shifted by different physical processes.

Fig. 8
Fig. 8

Time-dependent relaxation of the cavity mode. (a) Laser-scanned transmission spectrum of the cavity mode as a function of time. (b) Time-dependent variation of the resonance wavelength, with experimental data shown as blue open circles and theoretical fitting shown as a red curve. The wavelength tuning is defined as the wavelength difference between the blue shifted wavelength and the intrinsic resonance wavelength of the passive cavity. The inset shows the same figure but in logarithmic scale for the vertical axis.

Fig. 9
Fig. 9

Fitted ηE as a function of input optical power.

Fig. 10
Fig. 10

Time-dependent waveforms of cavity transmission at various laser-cavity detunings, for a z-cut LN microdisk resonator with a diameter of 14 μm, a thickness of 400 nm, and an intrinsic optical Q of 2.36 × 105. The input optical power is 111 μW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d a d t = ( i Δ 0 Γ t / 2 ) a i g T Δ T ¯ a i g E E ¯ sp a + i Γ e A ,
d ( Δ T ¯ ) d t = Γ T Δ T ¯ + η T | a | 2 ,
d ( E ¯ sp ) d t = Γ E E ¯ sp + η E | a | 2 ,

Metrics