Abstract

A novel technique for divided-pulse amplification is presented in a proof-of-principle experiment. A pulse burst, cut out of the pulse train of a mode-locked oscillator, is amplified and temporally combined into a single pulse. High combination efficiency and excellent pulse contrast are demonstrated. The system is mostly fiber-coupled, enabling a high interferometric stability. This approach provides access to the amplitude and phase of the individual pulses in the burst to be amplified, potentially allowing the compensation of gain saturation and nonlinear phase mismatches within the burst. Therefore, this technique enables the scaling of the peak power and pulse energy of pulsed laser systems beyond currently prevailing limitations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
12  mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition

Marco Kienel, Michael Müller, Arno Klenke, Jens Limpert, and Andreas Tünnermann
Opt. Lett. 41(14) 3343-3346 (2016)

Delay line coherent pulse stacking

Henrik Tünnermann and Akira Shirakawa
Opt. Lett. 42(23) 4829-4832 (2017)

Analysis of passively combined divided-pulse amplification as an energy-scaling concept

Marco Kienel, Arno Klenke, Tino Eidam, Martin Baumgartl, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann
Opt. Express 21(23) 29031-29042 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. Leemans, W. Chou, and M. Uesaka, “White Paper of the ICFA-ICUIL Joint Task Force - High Power Laser Technology for Accelerators,” ICFA Beam Dyn. Newsl. 56, 11–88 (2011).
  2. M. Lewenstein and P. Salières, “Generation of ultrashort coherent XUV pulses by harmonic conversion of intense laser pulses in gases: towards attosecond pulses,” Meas. Sci. Technol. 12(11), 1818–1827 (2001).
    [Crossref]
  3. D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 55(6), 447–449 (1985).
    [Crossref]
  4. F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
    [Crossref]
  5. T. Y. Fan, “Laser Beam Combining for High Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  6. E. Seise, A. Klenke, J. Limpert, and A. Tünnermann, “Coherent addition of fiber-amplified ultrashort laser pulses,” Opt. Express 18(26), 27827–27835 (2010).
    [Crossref] [PubMed]
  7. R. J. Jones and J. Ye, “Femtosecond pulse amplification by coherent addition in a passive optical cavity,” Opt. Lett. 27(20), 1848–1850 (2002).
    [Crossref] [PubMed]
  8. S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
    [Crossref]
  9. T. Zhou, J. Ruppe, C. Zhu, I.-N. Hu, J. Nees, and A. Galvanauskas, “Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers,” Opt. Express 23(6), 7442–7462 (2015).
    [Crossref] [PubMed]
  10. S. Szatmari and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1–3), 181–192 (1993).
    [Crossref]
  11. S. Podleska, “Verfahren und Vorrichtung zum Strecken und Rekomprimieren von optischen Impulsen, insbesondere von Laserimpulsen hoher Intensität,” DE Patent DE102006060703A1, 2006.
  12. S. Zhou, F. W. Wise, and D. G. Ouzounov, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett. 32(7), 871–873 (2007).
    [Crossref] [PubMed]
  13. Y. Zaouter, F. Guichard, L. Daniault, M. Hanna, F. Morin, C. Hönninger, E. Mottay, F. Druon, and P. Georges, “Femtosecond fiber chirped- and divided-pulse amplification system,” Opt. Lett. 38(2), 106–108 (2013).
    [Crossref] [PubMed]
  14. M. Kienel, A. Klenke, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification,” Opt. Lett. 39(4), 1049–1052 (2014).
    [Crossref] [PubMed]
  15. M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
    [Crossref] [PubMed]
  16. M. Kienel, M. Müller, A. Klenke, T. Eidam, J. Limpert, and A. Tünnermann, “Multidimensional coherent pulse addition of ultrashort laser pulses,” Opt. Lett. 40(4), 522–525 (2015).
    [Crossref] [PubMed]
  17. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express 14(25), 12188–12195 (2006).
    [Crossref] [PubMed]
  18. M. Mueller, M. Kienel, A. Klenke, T. Eidam, J. Limpert, and A. Tünnermann, “Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers,” Opt. Express 24(8), 7893–7904 (2016).
    [Crossref] [PubMed]
  19. D. R. Herriott and H. J. Schulte, “Folded Optical Delay Lines,” Appl. Opt. 4(8), 883–889 (1965).
    [Crossref]

2016 (2)

2015 (2)

2014 (3)

2013 (1)

2011 (1)

W. Leemans, W. Chou, and M. Uesaka, “White Paper of the ICFA-ICUIL Joint Task Force - High Power Laser Technology for Accelerators,” ICFA Beam Dyn. Newsl. 56, 11–88 (2011).

2010 (1)

2007 (1)

2006 (1)

2005 (1)

T. Y. Fan, “Laser Beam Combining for High Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

2002 (1)

2001 (1)

M. Lewenstein and P. Salières, “Generation of ultrashort coherent XUV pulses by harmonic conversion of intense laser pulses in gases: towards attosecond pulses,” Meas. Sci. Technol. 12(11), 1818–1827 (2001).
[Crossref]

1993 (1)

S. Szatmari and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1–3), 181–192 (1993).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

1965 (1)

Breitkopf, S.

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Carstens, H.

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Chou, W.

W. Leemans, W. Chou, and M. Uesaka, “White Paper of the ICFA-ICUIL Joint Task Force - High Power Laser Technology for Accelerators,” ICFA Beam Dyn. Newsl. 56, 11–88 (2011).

Daniault, L.

Druon, F.

Eidam, T.

Fan, T. Y.

T. Y. Fan, “Laser Beam Combining for High Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Fill, E.

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Galvanauskas, A.

Georges, P.

Guichard, F.

Hädrich, S.

Hanna, M.

Herriott, D. R.

Holzberger, S.

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Hönninger, C.

Hu, I.-N.

Jansen, F.

Jauregui, C.

Jones, R. J.

Kienel, M.

Klenke, A.

Krausz, F.

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Leemans, W.

W. Leemans, W. Chou, and M. Uesaka, “White Paper of the ICFA-ICUIL Joint Task Force - High Power Laser Technology for Accelerators,” ICFA Beam Dyn. Newsl. 56, 11–88 (2011).

Lewenstein, M.

M. Lewenstein and P. Salières, “Generation of ultrashort coherent XUV pulses by harmonic conversion of intense laser pulses in gases: towards attosecond pulses,” Meas. Sci. Technol. 12(11), 1818–1827 (2001).
[Crossref]

Limpert, J.

M. Mueller, M. Kienel, A. Klenke, T. Eidam, J. Limpert, and A. Tünnermann, “Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers,” Opt. Express 24(8), 7893–7904 (2016).
[Crossref] [PubMed]

M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
[Crossref] [PubMed]

M. Kienel, M. Müller, A. Klenke, T. Eidam, J. Limpert, and A. Tünnermann, “Multidimensional coherent pulse addition of ultrashort laser pulses,” Opt. Lett. 40(4), 522–525 (2015).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
[Crossref]

M. Kienel, A. Klenke, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification,” Opt. Lett. 39(4), 1049–1052 (2014).
[Crossref] [PubMed]

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

E. Seise, A. Klenke, J. Limpert, and A. Tünnermann, “Coherent addition of fiber-amplified ultrashort laser pulses,” Opt. Express 18(26), 27827–27835 (2010).
[Crossref] [PubMed]

Morin, F.

Mottay, E.

Mourou, G.

D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Mueller, M.

Müller, M.

Nees, J.

Otto, H.-J.

Ouzounov, D. G.

Pupeza, I.

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Ruppe, J.

Salières, P.

M. Lewenstein and P. Salières, “Generation of ultrashort coherent XUV pulses by harmonic conversion of intense laser pulses in gases: towards attosecond pulses,” Meas. Sci. Technol. 12(11), 1818–1827 (2001).
[Crossref]

Schreiber, T.

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Schulte, H. J.

Seise, E.

Shay, T. M.

Simon, P.

S. Szatmari and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1–3), 181–192 (1993).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Stutzki, F.

Szatmari, S.

S. Szatmari and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1–3), 181–192 (1993).
[Crossref]

Tünnermann, A.

M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
[Crossref] [PubMed]

M. Mueller, M. Kienel, A. Klenke, T. Eidam, J. Limpert, and A. Tünnermann, “Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers,” Opt. Express 24(8), 7893–7904 (2016).
[Crossref] [PubMed]

M. Kienel, M. Müller, A. Klenke, T. Eidam, J. Limpert, and A. Tünnermann, “Multidimensional coherent pulse addition of ultrashort laser pulses,” Opt. Lett. 40(4), 522–525 (2015).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
[Crossref]

M. Kienel, A. Klenke, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, “Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification,” Opt. Lett. 39(4), 1049–1052 (2014).
[Crossref] [PubMed]

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

E. Seise, A. Klenke, J. Limpert, and A. Tünnermann, “Coherent addition of fiber-amplified ultrashort laser pulses,” Opt. Express 18(26), 27827–27835 (2010).
[Crossref] [PubMed]

Uesaka, M.

W. Leemans, W. Chou, and M. Uesaka, “White Paper of the ICFA-ICUIL Joint Task Force - High Power Laser Technology for Accelerators,” ICFA Beam Dyn. Newsl. 56, 11–88 (2011).

von Grafenstein, L.

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Wise, F. W.

Ye, J.

Zaouter, Y.

Zhou, S.

Zhou, T.

Zhu, C.

Appl. Opt. (1)

ICFA Beam Dyn. Newsl. (1)

W. Leemans, W. Chou, and M. Uesaka, “White Paper of the ICFA-ICUIL Joint Task Force - High Power Laser Technology for Accelerators,” ICFA Beam Dyn. Newsl. 56, 11–88 (2011).

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, “Laser Beam Combining for High Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Light Sci. Appl. (1)

S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert, “A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities,” Light Sci. Appl. 3(10), e211 (2014).
[Crossref]

Meas. Sci. Technol. (1)

M. Lewenstein and P. Salières, “Generation of ultrashort coherent XUV pulses by harmonic conversion of intense laser pulses in gases: towards attosecond pulses,” Meas. Sci. Technol. 12(11), 1818–1827 (2001).
[Crossref]

Opt. Commun. (2)

D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

S. Szatmari and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1–3), 181–192 (1993).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Optica (1)

Other (1)

S. Podleska, “Verfahren und Vorrichtung zum Strecken und Rekomprimieren von optischen Impulsen, insbesondere von Laserimpulsen hoher Intensität,” DE Patent DE102006060703A1, 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simplified representation of the combination of four pulses (when going from left to right). The same setup can be used for pulse division when going from right to left. In this latter case, the rotation by the half-wave plate (HWP) and the propagation in the delay lines (DL) are reversed. (PBS: polarizing beam splitter.)
Fig. 2
Fig. 2 Generation of the polarization and phase pattern (from left to right). The individual steps are: splitting of the burst and imprinting the phase patterns; rotating one channel by 90°; amplifying and superposing both channels; rotating the polarization by 45°. In case of pattern decomposition (from right to left) the polarization rotations are reversed.
Fig. 3
Fig. 3 Schematic illustration of the EDPA setup used for the combination of four temporally separated pulses from two channels. (PD: photo diode, AOM: acousto-optic modulator, AWG: arbitrary waveform generator, EOM: electro-optic modulator, QWP: quarter-wave plate, HWP: half-wave plate, PBS: polarizing beam splitter.)
Fig. 4
Fig. 4 (a) PD trace of a pulse burst at a total energy of Etot = 3.4 µJ at a burst repetition rate of fburst = 135 kHz before temporal combining. (b) Experimental result of the combining efficiency and system efficiency measurements for the temporal combining of four pulses.
Fig. 5
Fig. 5 (a) PD voltage trace of the combined signal from EDPA with four pulses, Etot = 3.5 µJ and fburst = 135 kHz. The blue arrow highlights the strongest pre-pulse. The visible distortion at about 60 ns has been proven to be a measurement artifact originating from a reflection of the electric signal of the main pulse (ringing). (b) Experimental result of the temporal contrast measurements for the temporal combining of four pulses using EDPA.
Fig. 6
Fig. 6 Power spectral density (a) and integrated power spectral density (b) measured for different combining steps (spatial combining in red and temporal combining of four pulses from two channels each in yellow), a single channel before combining (colored blue) and the background (green) in EDPA at fburst = 1529 kHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η comb = E comb E loss + E comb
η sys = η comb η OE = E comb E tot .
C=10 log 10 E comb E pre
C max =10 log 10 22 0.005 29dB.

Metrics