Abstract

Ultrashort pulsed mode-locked lasers enable research at new time-scales and revolutionary technologies from bioimaging to materials processing. In general, the performance of these lasers is determined by the degree to which the pulses of a particular resonator can be scaled in energy and pulse duration before destabilizing. To date, milestones have come from the application of more tolerant pulse solutions, drawing on nonlinear concepts like soliton formation and self-similarity. Despite these advances, lasers have not reached the predicted performance limits anticipated by these new solutions. In this letter, towards resolving this discrepancy, we demonstrate that the route by which the laser arrives at the solution presents a limit to performance which, moreover, is reached before the solution itself becomes unstable. In contrast to known self-starting limitations stemming from suboptimal saturable absorption, we show that this limit persists even with an ideal saturable absorber. Furthermore, we demonstrate that this limit can be completely surmounted with an iteratively seeded technique for mode-locking. Iteratively seeded mode-locking is numerically explored and compared to traditional static seeding, initially achieving a five-fold increase in energy. This approach is broadly applicable to mode-locked lasers and can be readily implemented into existing experimental architectures.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Richardson, J. Nilsson, and W. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [Crossref]
  2. K. Tamura, E. Ippen, H. Haus, and L. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [Crossref] [PubMed]
  3. F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [Crossref] [PubMed]
  4. V. G. Bucklew and C. R. Pollock, “Realizing self-similar pulses in solid-state laser systems,” J. Opt. Soc. Am. B 29, 3027–3033 (2012).
    [Crossref]
  5. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
    [Crossref]
  6. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
    [Crossref]
  7. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
    [Crossref] [PubMed]
  8. J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex ginzburg-landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
    [Crossref]
  9. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  10. W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. E 77, 023814 (2008).
    [Crossref]
  11. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20nj,” Opt. Lett. 32, 2408–2410 (2007).
    [Crossref] [PubMed]
  12. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [Crossref] [PubMed]
  13. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
    [Crossref]
  14. E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
    [Crossref] [PubMed]
  15. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B 24, 1803–1806 (2007).
    [Crossref]
  16. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763–1770 (2008).
    [Crossref]
  17. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
    [Crossref]
  18. A. Cabasse, G. Martel, and J. Oudar, “High power dissipative soliton in an erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17, 9537–9542 (2009).
    [Crossref] [PubMed]
  19. R. I. Woodward and E. J. Kelleher, “Self-optimizing mode-locked laser using a genetic algorithm,” in CLEO: Science and Innovations, (Optical Society of America, 2016), pp. STu3P–6.
  20. J. W. Haefner and N. G. Usechak, “Rigorous characterization and analysis of the operating states in a passively mode-locked fiber laser,” in CLEO: Science and Innovations, (Optical Society of America, 2016), pp. STu1P–8.
  21. R. Woodward and E. Kelleher, “Towards’ smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” http://arXiv:1607.05688 (2016).
  22. U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33, 825–833 (2016).
    [Crossref]
  23. U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Fiber laser mode locked through an evolutionary algorithm,” Optica 2, 275–278 (2015).
    [Crossref]
  24. S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
    [Crossref]
  25. X. Fu and J. N. Kutz, “High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm,” Opt. Express 21, 6526–6537 (2013).
    [Crossref] [PubMed]
  26. S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
    [Crossref]
  27. R. Iegorov, T. Teamir, G. Makey, and F. Ilday, “Direct control of mode-locking states of a fiber laser,” Optica 3, 1312–1315 (2016).
    [Crossref]
  28. H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
    [Crossref]
  29. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
    [Crossref] [PubMed]
  30. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
    [Crossref]
  31. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).
    [Crossref] [PubMed]
  32. V. G. Bucklew, W. H. Renninger, F. W. Wise, and C. R. Pollock, “Average cavity description of self-similar lasers,” J. Opt. Soc. Am. B 31, 842–850 (2014).
    [Crossref]
  33. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).
    [Crossref]
  34. N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
    [Crossref]
  35. X. Wu, D. Tang, H. Zhang, and L. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17, 5580–5584 (2009).
    [Crossref] [PubMed]
  36. L. Hargrove, R. L. Fork, and M. Pollack, “Locking of he–ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
    [Crossref]
  37. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked ti: sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [Crossref] [PubMed]
  38. F. Li, P. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B 27, 2068–2077 (2010).
    [Crossref]
  39. X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17, 8506–8512 (2009).
    [Crossref] [PubMed]
  40. W. Liu, J. Fan, C. Xie, Y. Song, C. Gu, L. Chai, C. Wang, and M. Hu, “Programmable controlled mode-locked fiber laser using a digital micromirror device,” Opt. Lett. 42, 1923–1926 (2017).
    [Crossref] [PubMed]
  41. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  42. W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 63–70 (2015).
    [Crossref]

2017 (1)

2016 (2)

2015 (2)

U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Fiber laser mode locked through an evolutionary algorithm,” Optica 2, 275–278 (2015).
[Crossref]

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 63–70 (2015).
[Crossref]

2014 (2)

V. G. Bucklew, W. H. Renninger, F. W. Wise, and C. R. Pollock, “Average cavity description of self-similar lasers,” J. Opt. Soc. Am. B 31, 842–850 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

2013 (2)

X. Fu and J. N. Kutz, “High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm,” Opt. Express 21, 6526–6537 (2013).
[Crossref] [PubMed]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

2012 (4)

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).
[Crossref] [PubMed]

V. G. Bucklew and C. R. Pollock, “Realizing self-similar pulses in solid-state laser systems,” J. Opt. Soc. Am. B 29, 3027–3033 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
[Crossref] [PubMed]

2010 (6)

2009 (3)

2008 (4)

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763–1770 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. E 77, 023814 (2008).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

2007 (2)

2006 (2)

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref] [PubMed]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

2004 (1)

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

1997 (1)

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex ginzburg-landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

1995 (1)

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

1993 (1)

1991 (2)

1984 (1)

1964 (1)

L. Hargrove, R. L. Fork, and M. Pollack, “Locking of he–ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Afanasjev, V.

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex ginzburg-landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Aguergaray, C.

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex ginzburg-landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Amrani, F.

Andral, U.

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

Bale, B. G.

Billard, F.

Brunton, S. L.

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

Bucklew, V. G.

Buckley, J.

Buguet, J.

Cabasse, A.

Chai, L.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).
[Crossref]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763–1770 (2008).
[Crossref]

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. E 77, 023814 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B 24, 1803–1806 (2007).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20nj,” Opt. Lett. 32, 2408–2410 (2007).
[Crossref] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref] [PubMed]

Clark, W.

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Clarkson, W.

Ding, E.

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
[Crossref] [PubMed]

Fan, J.

Fodil, R. S.

Fork, R. L.

L. Hargrove, R. L. Fork, and M. Pollack, “Locking of he–ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Fu, X.

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

X. Fu and J. N. Kutz, “High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm,” Opt. Express 21, 6526–6537 (2013).
[Crossref] [PubMed]

Fujimoto, J. G.

Grelu, P.

U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33, 825–833 (2016).
[Crossref]

U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Fiber laser mode locked through an evolutionary algorithm,” Optica 2, 275–278 (2015).
[Crossref]

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
[Crossref] [PubMed]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

Gu, C.

Haefner, J. W.

J. W. Haefner and N. G. Usechak, “Rigorous characterization and analysis of the operating states in a passively mode-locked fiber laser,” in CLEO: Science and Innovations, (Optical Society of America, 2016), pp. STu1P–8.

Hargrove, L.

L. Hargrove, R. L. Fork, and M. Pollack, “Locking of he–ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Harvey, J. D.

Haus, H.

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, E. Ippen, H. Haus, and L. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref] [PubMed]

Haus, H. A.

Hertz, E.

Hu, M.

Iegorov, R.

Ilday, F.

R. Iegorov, T. Teamir, G. Makey, and F. Ilday, “Direct control of mode-locking states of a fiber laser,” Optica 3, 1312–1315 (2016).
[Crossref]

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Ilday, F. Ö.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Ippen, E.

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, E. Ippen, H. Haus, and L. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref] [PubMed]

Ippen, E. P.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

Kean, P. N.

Kelleher, E.

R. Woodward and E. Kelleher, “Towards’ smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” http://arXiv:1607.05688 (2016).

Kelleher, E. J.

R. I. Woodward and E. J. Kelleher, “Self-optimizing mode-locked laser using a genetic algorithm,” in CLEO: Science and Innovations, (Optical Society of America, 2016), pp. STu3P–6.

Kruglov, V.

Kutz, J. N.

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

X. Fu and J. N. Kutz, “High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm,” Opt. Express 21, 6526–6537 (2013).
[Crossref] [PubMed]

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
[Crossref] [PubMed]

F. Li, P. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B 27, 2068–2077 (2010).
[Crossref]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763–1770 (2008).
[Crossref]

Li, F.

Li, X.

Lin, A.

Liu, W.

Liu, X.

Lu, K.

Makey, G.

Martel, G.

Méchin, D.

Mollenauer, L. F.

Nelson, L.

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, E. Ippen, H. Haus, and L. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref] [PubMed]

Nilsson, J.

Oktem, B.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Oudar, J.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

Pollack, M.

L. Hargrove, R. L. Fork, and M. Pollack, “Locking of he–ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Pollock, C. R.

Renninger, W.

Renninger, W. H.

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 63–70 (2015).
[Crossref]

V. G. Bucklew, W. H. Renninger, F. W. Wise, and C. R. Pollock, “Average cavity description of self-similar lasers,” J. Opt. Soc. Am. B 31, 842–850 (2014).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).
[Crossref] [PubMed]

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).
[Crossref]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763–1770 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20nj,” Opt. Lett. 32, 2408–2410 (2007).
[Crossref] [PubMed]

Richardson, D.

Shlizerman, E.

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
[Crossref] [PubMed]

Sibbett, W.

Song, Y.

Soto-Crespo, J.

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex ginzburg-landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

Spence, D. E.

Stolen, R. H.

Sun, H.

Tamura, K.

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, E. Ippen, H. Haus, and L. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref] [PubMed]

Tang, D.

Teamir, T.

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Usechak, N. G.

J. W. Haefner and N. G. Usechak, “Rigorous characterization and analysis of the operating states in a passively mode-locked fiber laser,” in CLEO: Science and Innovations, (Optical Society of America, 2016), pp. STu1P–8.

Wabnitz, S.

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex ginzburg-landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Wai, P.

Wang, C.

Wang, L.

Wang, Y.

Wise, F.

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. E 77, 023814 (2008).
[Crossref]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref] [PubMed]

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Wise, F. W.

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 63–70 (2015).
[Crossref]

V. G. Bucklew, W. H. Renninger, F. W. Wise, and C. R. Pollock, “Average cavity description of self-similar lasers,” J. Opt. Soc. Am. B 31, 842–850 (2014).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).
[Crossref] [PubMed]

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).
[Crossref]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763–1770 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20nj,” Opt. Lett. 32, 2408–2410 (2007).
[Crossref] [PubMed]

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B 24, 1803–1806 (2007).
[Crossref]

Woodward, R.

R. Woodward and E. Kelleher, “Towards’ smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” http://arXiv:1607.05688 (2016).

Woodward, R. I.

R. I. Woodward and E. J. Kelleher, “Self-optimizing mode-locked laser using a genetic algorithm,” in CLEO: Science and Innovations, (Optical Society of America, 2016), pp. STu3P–6.

Wu, X.

Xie, C.

Zhang, H.

Zhao, L.

Zhao, W.

Zhou, S.

Appl. Phys. B (1)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

Appl. Phys. Lett. (1)

L. Hargrove, R. L. Fork, and M. Pollack, “Locking of he–ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

IEEE J. Quantum Electron. (2)

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

H. Haus, K. Tamura, L. Nelson, and E. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).
[Crossref] [PubMed]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 63–70 (2015).
[Crossref]

Int. J. Opt. (1)

E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, “High-energy passive mode-locking of fiber lasers,” Int. J. Opt. 2012, 354156 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (9)

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B 24, 1803–1806 (2007).
[Crossref]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763–1770 (2008).
[Crossref]

D. Richardson, J. Nilsson, and W. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[Crossref]

V. G. Bucklew and C. R. Pollock, “Realizing self-similar pulses in solid-state laser systems,” J. Opt. Soc. Am. B 29, 3027–3033 (2012).
[Crossref]

U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33, 825–833 (2016).
[Crossref]

V. G. Bucklew, W. H. Renninger, F. W. Wise, and C. R. Pollock, “Average cavity description of self-similar lasers,” J. Opt. Soc. Am. B 31, 842–850 (2014).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).
[Crossref]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
[Crossref]

F. Li, P. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B 27, 2068–2077 (2010).
[Crossref]

Laser Photon. Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Nat. Photonics (2)

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (2)

Phys. Lett. A (1)

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[Crossref]

Phys. Rev. E (2)

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex ginzburg-landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. E 77, 023814 (2008).
[Crossref]

Phys. Rev. Lett. (1)

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Other (4)

R. I. Woodward and E. J. Kelleher, “Self-optimizing mode-locked laser using a genetic algorithm,” in CLEO: Science and Innovations, (Optical Society of America, 2016), pp. STu3P–6.

J. W. Haefner and N. G. Usechak, “Rigorous characterization and analysis of the operating states in a passively mode-locked fiber laser,” in CLEO: Science and Innovations, (Optical Society of America, 2016), pp. STu1P–8.

R. Woodward and E. Kelleher, “Towards’ smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” http://arXiv:1607.05688 (2016).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The elements in the laser cavity are iteratively changed as a function of time in order to stabilize an evolving pulse. (b) Reaching a pulse state requires that the initial state seeding the pulse evolution lies within a region of attraction (dark blue) of the exact solution (white line) supported by that resonator state. Regions of attraction denote areas where a seed state can be pulled in to the steady state solution that is linked to that specific resonator state (x-axis). By incrementally changing the resonator state, the pulse generated in the previous resonator state can be made to lie within a region of attraction for the new state, and thus safely be transitioned into a new steady state pulse solution (y-axis). In standard designs when statically seeded states do not lie within an attraction region of the desired final resonator state, pulse formation is not observed. (c) The pulse state of a standard statically seeded mode-locked laser is shown as a function of time. (d) The pulse state and resonator state of an iteratively-seeded mode-locked laser with the same final resonator state as (c) are shown as a function of time.

Fig. 2
Fig. 2

Representative simulations of the spectral and temporal evolutions of a pulse for a resonator with the same final cavity parameters. (a) and (b) represent a standard static seeded resonator. (c) and (d) represent an iteratively seeded resonator.

Fig. 3
Fig. 3

Map of cavity configurations for a standard noise seeded (a–b) and an ISM (c–d) cavity. Dark blue regions in (a) and (c) denote stable cavity configurations whereas light blue regions in (a) and (c) denote configurations that do not produce stable pulse evolutions. The ISM simulations begin at the origin dot in a linear trajectory in (a) and (c) until reaching a designated end point (The figure represents results of 162 simulations arranged in a 9 × 18 point grid of GDD x Esat for each cavity type). Figures (b) and (d) represent energy contours of these simulations, showing that in this example, an ISM design can generate pulses with 5× more energy than in similar statically seeded designs initialized with either cavity noise, a broad several hundred picosecond long pulse representative of acousto-optic seeding, or picosecond scale cavity fluctuations reflective of table tapping.

Fig. 4
Fig. 4

After every change in cavity configuration for an evolving pulse in the ISM cavity, the pulse was allowed to settle before taking the next step. These simulations show that each cavity step in the ISM resonator is able to stabilize and pull the pulse in the previous cavity step into a steady state solution. A comparison with a static-seeded resonator is shown to demonstrate that at no point in the evolution of the static seeded system is a mode-locked state stabilized. (a) Temporal evolution of a pulse as a function of round trip in a static-seeded resonator; (b) Energy and pulse quality Q as a function of round trip number for a static-seeded resonator; (c) Temporal evolution of a pulse as a function of round trip in an iteratively-seeded resonator; (d) Energy and pulse quality Q as a function of round trip number for an iteratively-seeded resonator.

Fig. 5
Fig. 5

The route taken to a final resonator state determines whether a pulse will or will not form. Here, the temporal evolution of a pulse is shown for four different cavity routes which each have the same final resonator state, but only one of which stabilizes pulse formation. Path 1: Cavity group delay dispersion and saturation energy are both varied in a linear relationship; Path 2: Cavity group delay dispersion is linearly varied while saturation energy is held fixed; Path 3: Cavity group delay dispersion is held fixed while saturation energy is linearly varied. This case represents an analogue of gradually increasing the pump power in a noise-seeded laser cavity; Path 4: Cavity group delay dispersion and saturation energy are both held fixed representing a standard noise-seeded cavity.

Fig. 6
Fig. 6

(a) The pulse quality Q is shown as a function of round trip number for the four different cavity paths P1–P4 shown in Fig 5. (b) The pulse state (represented by the quantity Q X E) is shown as a function of cavity state (represented by the added group delay dispersion). The arrows point in the direction of time. Only Path 1, which varies both pulse energy and group delay dispersion at the same time, leads to stable pulse generation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z = [ g 0 ( z ) 1 + E P E sat ( 1 + 1 ω c 2 2 t 2 ) j 2 β ( z ) 2 t 2 + j γ ( z ) | A ( z , t ) | 2 ] A ( z , t ) .

Metrics