Abstract

A physical model combining rate, power propagation, and transient heat conduction equations for diode-pumped alkali vapor lasers (DPAL) is applied to a pulsed Rb-CH4 DPAL, which agrees well with the time evolution of laser power and temperature measured by K absorption spectroscopy. The output feature and temperature rise of a multi-pulse DPAL are also calculated in the time domain, showing that if we energize the pump light when the temperature rise decays to 1/2, rather than 1/e of its maximum, we can increase the duty cycle and obtain more output energy. The repetition rate of >100Hz is high enough to achieve QCW (quasi-continuous-wave) laser pulses.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time measurement of temperature rise in a pulsed diode pumped rubidium vapor laser by potassium tracing atom based absorption spectroscopy

Xiaofan Zhao, Zining Yang, Weihong Hua, Hongyan Wang, and Xiaojun Xu
Opt. Express 25(6) 5841-5851 (2017)

Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I

Juhong Han, You Wang, He Cai, Wei Zhang, Liangping Xue, and Hongyuan Wang
Opt. Express 22(11) 13988-14003 (2014)

Modeling of supersonic diode pumped alkali lasers

Eyal Yacoby, Karol Waichman, Oren Sadot, Boris D. Barmashenko, and Salman Rosenwaks
J. Opt. Soc. Am. B 32(9) 1824-1833 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” SPIE 9990, 99900C (2016).
  2. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  3. T. Ehrenreich, B. V. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
    [Crossref]
  4. B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
    [Crossref]
  5. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
    [Crossref] [PubMed]
  6. B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
    [Crossref]
  7. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  8. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “‘Potassium diode pumped alkali laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
    [Crossref]
  9. M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
    [Crossref] [PubMed]
  10. R. Wang, Z. Yang, H. Wang, and X. Xu, “Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser,” Opt. Lett. 42(4), 667–670 (2017).
    [Crossref] [PubMed]
  11. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  12. Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
    [Crossref]
  13. Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
    [Crossref]
  14. B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
    [Crossref]
  15. B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
    [Crossref] [PubMed]
  16. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs,” Proc. SPIE 9650, 96500C (2015).
    [Crossref]
  17. J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
    [Crossref] [PubMed]
  18. W. Huang, R. Tan, Z. Li, and X. Lu, “Theoretical model and simulations for a cw exciplex pumped alkali laser,” Opt. Express 23(25), 31698–31715 (2015).
    [Crossref] [PubMed]
  19. B. Shen, X. Xu, C. Xia, and B. Pan, “Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers,” Opt. Commun. 380, 28–34 (2016).
    [Crossref]
  20. I. Auslender, B. Barmashenko, S. Rosenwaks, B. Zhdanov, M. Rotondaro, and R. J. Knize, “Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results,” Opt. Express 23(16), 20986–20996 (2015).
    [Crossref] [PubMed]
  21. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Laser power, cell temperature and beam quality dependence on cell length of static Cs DPAL,” J. Opt. Soc. Am. B 34(2), 279–286 (2017).
    [Crossref]
  22. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
    [Crossref] [PubMed]
  23. X. Zhao, Z. Yang, W. Hua, H. Wang, and X. Xu, “Real-time measurement of temperature rise in a pulsed diode pumped rubidium vapor laser by potassium tracing atom based absorption spectroscopy,” Opt. Express 25(6), 5841–5851 (2017).
    [Crossref] [PubMed]
  24. E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48(22), 2761–2768 (1970).
    [Crossref]
  25. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6 (Pergamon, Elmsford, 1989), Chap. 5.
  26. E. W. Lemmon, M. O. McLinden, and D. G. Friend, Thermophysical properties of fluid systems (NIST Chemistry Webbook, NIST Standard Reference Database, 2005), Available: http://webbook.nist.gov/chemistry/fluid .
  27. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
    [Crossref]
  28. B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
    [Crossref]
  29. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42(24), 245401 (2009).
    [Crossref]

2017 (4)

2016 (3)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. Shen, X. Xu, C. Xia, and B. Pan, “Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers,” Opt. Commun. 380, 28–34 (2016).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” SPIE 9990, 99900C (2016).

2015 (7)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “‘Potassium diode pumped alkali laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs,” Proc. SPIE 9650, 96500C (2015).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
[Crossref] [PubMed]

I. Auslender, B. Barmashenko, S. Rosenwaks, B. Zhdanov, M. Rotondaro, and R. J. Knize, “Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results,” Opt. Express 23(16), 20986–20996 (2015).
[Crossref] [PubMed]

W. Huang, R. Tan, Z. Li, and X. Lu, “Theoretical model and simulations for a cw exciplex pumped alkali laser,” Opt. Express 23(25), 31698–31715 (2015).
[Crossref] [PubMed]

2014 (2)

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

2012 (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

2011 (1)

2010 (1)

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[Crossref]

2009 (1)

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42(24), 245401 (2009).
[Crossref]

2008 (2)

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[Crossref] [PubMed]

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

2007 (1)

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

2005 (1)

T. Ehrenreich, B. V. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

2004 (1)

2003 (1)

1970 (1)

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48(22), 2761–2768 (1970).
[Crossref]

Auslender, I.

Barmashenko, B.

Barmashenko, B. D.

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Laser power, cell temperature and beam quality dependence on cell length of static Cs DPAL,” J. Opt. Soc. Am. B 34(2), 279–286 (2017).
[Crossref]

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs,” Proc. SPIE 9650, 96500C (2015).
[Crossref]

Beach, R. J.

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Boyadjian, G.

Cai, H.

Chen, J.

Chen, L.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[Crossref]

Dubinskii, M. A.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Ehrenreich, T.

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

T. Ehrenreich, B. V. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Eroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Flusche, B.

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Hager, G. D.

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42(24), 245401 (2009).
[Crossref]

Haiducek, J. D.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Han, J.

Havko, A.

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Hostutler, D. A.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42(24), 245401 (2009).
[Crossref]

Hrycyshyn, E. S.

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48(22), 2761–2768 (1970).
[Crossref]

Hua, W.

Huang, J.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

Huang, W.

Jiao, J.

Kanz, V. K.

Knize, R. J.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” SPIE 9990, 99900C (2016).

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “‘Potassium diode pumped alkali laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

I. Auslender, B. Barmashenko, S. Rosenwaks, B. Zhdanov, M. Rotondaro, and R. J. Knize, “Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results,” Opt. Express 23(16), 20986–20996 (2015).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[Crossref] [PubMed]

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

T. Ehrenreich, B. V. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Koval, N.

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Krause, L.

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48(22), 2761–2768 (1970).
[Crossref]

Krupke, W. F.

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Li, Y.

Li, Z.

Lilly, T. C.

Lu, Q.

Lu, X.

Madden, T. J.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Maes, C.

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Meeker, T.

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Merkle, L. D.

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Oliker, B. Q.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Pan, B.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

B. Shen, X. Xu, C. Xia, and B. Pan, “Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers,” Opt. Commun. 380, 28–34 (2016).
[Crossref]

B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
[Crossref] [PubMed]

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[Crossref]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Payne, S. A.

Phipps, S. P.

T. Ehrenreich, B. V. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Pitz, G. A.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Rosenwaks, S.

Rotondaro, M.

Rotondaro, M. D.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” SPIE 9990, 99900C (2016).

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “‘Potassium diode pumped alkali laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

Rudolph, W.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42(24), 245401 (2009).
[Crossref]

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sell, J.

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

Shaffer, M. K.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” SPIE 9990, 99900C (2016).

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “‘Potassium diode pumped alkali laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

Shen, B.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

B. Shen, X. Xu, C. Xia, and B. Pan, “Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers,” Opt. Commun. 380, 28–34 (2016).
[Crossref]

B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
[Crossref] [PubMed]

Stooke, A.

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Takekoshi, T.

T. Ehrenreich, B. V. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Tan, R.

Voci, A.

Waichman, K.

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Laser power, cell temperature and beam quality dependence on cell length of static Cs DPAL,” J. Opt. Soc. Am. B 34(2), 279–286 (2017).
[Crossref]

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs,” Proc. SPIE 9650, 96500C (2015).
[Crossref]

Wang, H.

Wang, R.

Wang, Y.

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[Crossref]

Worker, B.

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Xia, C.

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

B. Shen, X. Xu, C. Xia, and B. Pan, “Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers,” Opt. Commun. 380, 28–34 (2016).
[Crossref]

B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
[Crossref] [PubMed]

Xu, X.

Xue, L.

Yang, Z.

Zameroski, N. D.

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42(24), 245401 (2009).
[Crossref]

Zhang, W.

Zhang, X.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[Crossref]

Zhao, X.

Zhdanov, B.

Zhdanov, B. V.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” SPIE 9990, 99900C (2016).

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “‘Potassium diode pumped alkali laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[Crossref] [PubMed]

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

T. Ehrenreich, B. V. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Zhu, Q.

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[Crossref]

Can. J. Phys. (1)

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48(22), 2761–2768 (1970).
[Crossref]

Electron. Lett. (1)

T. Ehrenreich, B. V. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Shen, J. Huang, X. Xu, C. Xia, and B. Pan, “Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results,” IEEE J. Quantum Electron. 53(3), 1–7 (2017).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42(24), 245401 (2009).
[Crossref]

Opt. Commun. (6)

B. Shen, X. Xu, C. Xia, and B. Pan, “Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers,” Opt. Commun. 380, 28–34 (2016).
[Crossref]

B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “‘Potassium diode pumped alkali laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (2)

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs,” Proc. SPIE 9650, 96500C (2015).
[Crossref]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

SPIE (1)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Thermal effects in Cs DPAL and alkali cell window damage,” SPIE 9990, 99900C (2016).

Other (2)

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6 (Pergamon, Elmsford, 1989), Chap. 5.

E. W. Lemmon, M. O. McLinden, and D. G. Friend, Thermophysical properties of fluid systems (NIST Chemistry Webbook, NIST Standard Reference Database, 2005), Available: http://webbook.nist.gov/chemistry/fluid .

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (3922 KB)      Visualization 1 the whole time-dependent temperature distribution

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the spatial and temporal division of the alkali vapor cell.
Fig. 2
Fig. 2 Experimental and simulated signals of time evolution of pump, laser, and temperature with P p ¯ =92 W and τ p =2 ms (FWHM).
Fig. 3
Fig. 3 The 3D temperature distribution in the cell of a DPAL at time = 3 ms after pump light is on (the whole time-dependent temperature distribution can be seen in Visualization 1).
Fig. 4
Fig. 4 (a) Temperature rise and average laser power as functions of pump pulse duration. (b) Time evolution of pump and laser signals. The gas cell is heated to 408 K and the average pump power is 85.3 W.
Fig. 5
Fig. 5 Time evolution of power and temperature rise of multi-pulses DPALs, where the pump signal is assumed to be an ideal rectangular shape. (a) The pump power is turned on when the temperature rise decays to 1/e of its maximum. (b) The pump power is turned on when the temperature rise decays to 1/2 of its maximum.
Fig. 6
Fig. 6 Time evolution of power and temperature rise of multi-pulses DPALs, where the pump signal is assumed to be trapezoidal with a rise and fall time of 0.5 ms. (a) The pump power is turned on when the temperature rise decays to 1/e of its maximum. (b) The pump power is turned on when the temperature rise decays to 1/2 of its maximum.

Tables (1)

Tables Icon

Table 1 Experimental parameters of the Rb DPAL.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d n 2 d t = ( n 2 n 1 ) σ D 1 f l ( P l + + P l ) h v l + γ 32 [ n 3 2 n 2 exp ( Δ E k T ) ] γ 21 n 2 A 21 n 2 ,
  d n 3 d t = ( n 1 1 2 n 3 ) σ D 2 ( λ ) f p P p ( λ ) h v p d λ γ 32 [ n 3 2 n 2 exp ( Δ E k T ) ] γ 31 n 3 A 31 n 3 ,
n 1 = N o T o / T n 3 n 2 ,
γ ij = 133.3 P C H 4 σ ij (T) kT 8kT π m r ,.
f p (x,y,z)= c 2 π w px (z) w py (z) exp{ c 2 [ x 2 w px (z) 2 + y 2 w py (z) 2 ] },
f l (x,y,z)= c 2 π w l (z) 2 exp[ c 2 ( x 2 + y 2 ) w l (z) 2 ],
w px,py,l (z)= w 0, p x , p y ,l [ (z z 0,px,py,l ) c px,py,l λ p,l π w 0,px,py,l 2 ] 2 +1 ,
P p (z+Δz,λ)= P p (z,λ) Rx,yR f p (x,y,z)exp[ ( n 1 n 3 2 ) σ D2 (x,y,λ)Δz ] ΔxΔy,
P l ± (z+Δz)= P l ± (z) Rx,yR f l (x,y,z)exp[ ±( n 2 n 1 ) σ D1 (x,y)Δz ] ΔxΔy,
Cρ( T t +υT )=[ KT ]+Ω,
Cρ T t = K T [ ( T x ) 2 + ( T y ) 2 + ( T z ) 2 ]+K( 2 T x 2 + 2 T y 2 + 2 T z 2 )+Ω(x,y,z,t).
{ T t = T i,j,k t+1 T i,j,k t Δt , 2 T x 2 = T i,+1j,k t 2 T i,j,k t + T i,1j,k t Δ x 2 , 2 T y 2 = T i,j+1,k t 2 T i,j,k t + T i,j1,k t Δ y 2 , 2 T z 2 = T i,j,k+1 t 2 T i,j,k t + T i,j,k1 t Δ z 2 .
Cρ T i,j,k t+1 T i,j,k t Δt = K( T i+1,j,k t + T i1,j,k t 2 T i,j,k t Δ x 2 + T i,j+1,k t + T i,j1,k t 2 T i,j,k t Δ y 2 + T i,j,k+1 t + T i,j,k1 t 2 T i,j,k t Δ z 2 )+ Ω i,j,k t ,
T i,j,k t+1 =( 14α2β ) T i,j,k t + Δt Cρ Ω i,j,k t +α( T i+1,j,k t + T i1,j,k t + T i,j+1,k t + T i,j1,k t )+β( T i,j,k+1 t + T i,j,k1 t ),
Ω= γ 32 [ n 3 2 n 2 exp( ΔE kT ) ]ΔE+h ν p γ 31 n 3 +h ν l γ 21 n 2 ,
Cρ= C pC H 4 (T) m C H 4 N A m C H 4 n C H 4 (T)= C pC H 4 (T) n C H 4 (T)/ N A ,
P p t ( 0,λ )= P p ¯ τ p 0 τ p S p ( t )d t S p (t)η ln2 π 2 Δ λ p exp[ 4ln2 Δ v p 2 ( c λ c λ p ) 2 ],
P l ¯ = 0 τ p P l ( t )d t / τ p

Metrics