Abstract

We investigate the mid-IR laser beam characteristics from an acetylene-filled hollow-core optical fiber gas laser (HOFGLAS) system. The laser exhibits near-diffraction limited beam quality in the 3 μm region with M2 = 1.15 ± 0.02 measured at high pulse energy, and the highest mid-IR pulse energy from a HOFGLAS system of 1.4 μJ is reported. Furthermore, the effects of output saturation with pump pulse energy are reduced through the use of longer fibers with low loss. Finally, the slope efficiency is shown to be nearly independent of gas pressure over a wide range, which is encouraging for further output power increase.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber

Zefeng Wang, Walter Belardi, Fei Yu, William J. Wadsworth, and Jonathan C. Knight
Opt. Express 22(18) 21872-21878 (2014)

Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited]

A. V. Vasudevan Nampoothiri, Andrew M. Jones, C. Fourcade-Dutin, Chenchen Mao, Neda Dadashzadeh, Bastian Baumgart, Y.Y. Wang, M. Alharbi, T. Bradley, Neil Campbell, F. Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph
Opt. Mater. Express 2(7) 948-961 (2012)

High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers

Zhiyue Zhou, Ni Tang, Zhixian Li, Wei Huang, Zefeng Wang, Wuming Wu, and Weihong Hua
Opt. Express 26(15) 19144-19153 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Ionin, “Electric Discharge CO Lasers,” in Gas Lasers, M. Endo, and R. F. Walter, ed. (Chemical Rubber Company, 2007), pp. 201–237.
  2. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  3. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
    [Crossref]
  4. J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
    [Crossref]
  5. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
    [Crossref] [PubMed]
  6. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  7. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
    [Crossref] [PubMed]
  8. A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).
  9. A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
    [Crossref]
  10. A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun. 283(6), 1075–1080 (2010).
    [Crossref]
  11. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
    [Crossref]
  12. A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40(4), 605–608 (2015).
    [Crossref] [PubMed]
  13. M. Abu Hassan, F. Yu, W. Wadsworth, and J. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3(3), 218–221 (2016).
    [Crossref]
  14. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  15. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  16. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  17. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref] [PubMed]
  18. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  19. Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
    [Crossref] [PubMed]
  20. N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Gérôme, F. Benabid, B. Washburn, and K. Corwin, “Power-scaling a Mid-IR OPA-pumped Acetylene-filled hollow-core photonic crystal fiber laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh4O.1.
    [Crossref]
  21. P. B. Chapple, “Beam Waist and M2 measurement using a finite slit,” Opt. Eng. 33(7), 2461–2466 (1994).
    [Crossref]
  22. ISO Standard 11146, “Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios” (2005).
  23. T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  24. B. Chann, R. K. Huang, L. J. Missaggia, C. T. Harris, Z. L. Liau, A. K. Goyal, J. P. Donnelly, T. Y. Fan, A. Sanchez-Rubio, and G. W. Turner, “Near-diffraction-limited diode laser arrays by wavelength beam combining,” Opt. Lett. 30(16), 2104–2106 (2005).
    [Crossref] [PubMed]
  25. V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol. 77(1), 6–17 (2010).
    [Crossref]
  26. L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24(10), 10313–10325 (2016).
    [Crossref] [PubMed]
  27. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17(7), 1263–1270 (2000).
    [Crossref]

2017 (1)

2016 (2)

2015 (1)

2014 (1)

2013 (1)

2012 (2)

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

2011 (2)

2010 (5)

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
[Crossref] [PubMed]

V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol. 77(1), 6–17 (2010).
[Crossref]

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun. 283(6), 1075–1080 (2010).
[Crossref]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

2008 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2006 (1)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

2005 (2)

2003 (1)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

2000 (1)

1994 (1)

P. B. Chapple, “Beam Waist and M2 measurement using a finite slit,” Opt. Eng. 33(7), 2461–2466 (1994).
[Crossref]

Abu Hassan, M.

Alharbi, M.

Amsanpally, A.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Barty, C. P. J.

Baumgart, B.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

Baz, A.

Beach, R. J.

Belardi, W.

Benabid, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40(4), 605–608 (2015).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Blondy, J. M.

Boiko, É. V.

Bradley, T.

Campbell, N.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun. 283(6), 1075–1080 (2010).
[Crossref]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
[Crossref] [PubMed]

Chafer, M.

Chann, B.

Chapple, P. B.

P. B. Chapple, “Beam Waist and M2 measurement using a finite slit,” Opt. Eng. 33(7), 2461–2466 (1994).
[Crossref]

Corwin, K. L.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Dadashzadeh, N.

Dawson, J. W.

Debord, B.

Donnelly, J. P.

Ehrenreich, T.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Fan, T. Y.

Fiedler, T.

Fourcade-Dutin, C.

Gérôme, F.

Gilbert, S. L.

Goyal, A. K.

Harris, C. T.

Heebner, J. E.

Huang, R. K.

Hugonnot, E.

Jones, A. M.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Kadel, R.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Kanz, V. K.

Knight, J.

Knight, J. C.

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Knize, R. J.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Komashko, A.

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

Krupke, W. F.

Liau, Z. L.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Mao, C.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

Maurel, M.

Messerly, M. J.

Missaggia, L. J.

Nampoothiri, A. V. V.

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40(4), 605–608 (2015).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
[Crossref] [PubMed]

Pax, P. H.

Payne, S. A.

Petrishchev, N. N.

Ratanavis, A.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun. 283(6), 1075–1080 (2010).
[Crossref]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Rudolph, W.

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40(4), 605–608 (2015).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun. 283(6), 1075–1080 (2010).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
[Crossref] [PubMed]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Sanchez-Rubio, A.

Scol, F.

Serebryakov, V. A.

Shverdin, M. Y.

Siders, C. W.

Sridharan, A. K.

Stappaerts, E. A.

Swann, W. C.

Turner, G. W.

Vincetti, L.

Wadsworth, W.

Wadsworth, W. J.

Wang, Y.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Wang, Y. Y.

Wang, Z.

Washburn, B. R.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

Wheeler, N. V.

Yan, A. V.

Yu, F.

Zhdanov, B. V.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Zweiback, J.

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

Opt. Commun. (2)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun. 283(6), 1075–1080 (2010).
[Crossref]

Opt. Eng. (1)

P. B. Chapple, “Beam Waist and M2 measurement using a finite slit,” Opt. Eng. 33(7), 2461–2466 (1994).
[Crossref]

Opt. Express (6)

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
[Crossref] [PubMed]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref] [PubMed]

L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24(10), 10313–10325 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (2)

Proc. SPIE (3)

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, A. Ratanavis, R. Kadel, N. V. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-IR laser emission from a C2H2 gas filled hollow core photonic crystal fiber,” Proc. SPIE 7580, 758001 (2010).

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Science (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (3)

N. Dadashzadeh, M. Thirugnanasambandam, K. Weerasinghe, B. Debord, M. Chafer, F. Gérôme, F. Benabid, B. Washburn, and K. Corwin, “Power-scaling a Mid-IR OPA-pumped Acetylene-filled hollow-core photonic crystal fiber laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh4O.1.
[Crossref]

ISO Standard 11146, “Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios” (2005).

A. A. Ionin, “Electric Discharge CO Lasers,” in Gas Lasers, M. Endo, and R. F. Walter, ed. (Chemical Rubber Company, 2007), pp. 201–237.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of C2H2 filled HOFGLAS pumped by an OPA operating at 1.5 μm, 30 Hz, 1 ns. The OPA is a MgO:PPLN crystal pumped by a Nd:YAG pulsed laser, ωp, at 1.064 μm and seeded by a CW tunable fiber laser, ωs, at 1.5 μm. HWP – Half wave plate, PBS – Polarizing beam splitter, M – Silver mirrors, FM – HR mirrors on flipper mount, L1- BK7 lens, L2 - CaF2 lens, G – To gas inlet or roughing pump, VC - Vacuum chambers, Pin – Input OPA pump pulse energy, Pout – Output pulse energy, Ge-F – Germanium filter, Plaser – 3 μm output pulse energy. (b) Cross-section of vacuum chamber with fiber mounted using fiber holder. FH – Fiber holder, W- Window. (c) Cross-section of HC-PCF used in the laser setup showing the kagome lattice structure and the hypocycloidal core.
Fig. 2
Fig. 2 (a) Measured loss in the IC kagome fiber around 1.5 μm pump wavelength region. (b) Spectrum of 3 μm output of acetylene HOFGLAS. Inset shows the simple molecular energy level diagram of acetylene. The lasing wavelengths are observed at 3.11 μm and 3.17 μm corresponding to the R(11) and P(13) transitions between the excited state ν1 + ν3 and the vibrational state ν1.
Fig. 3
Fig. 3 Laser output pulse energy at 3 μm versus (a) coupled pump pulse energy at 1.53 μm into the fiber with coupling lens of focal length f = 75 mm, and (b) estimated pump pulse energy absorbed by gas. Error bars represent the standard deviation of individual pulses and are 9.7% at the maximum power.
Fig. 4
Fig. 4 (a) Saturated laser output pulse energy at 3 μm for various acetylene pressures. As acetylene pressure increases, the pump pulse energy at which saturation is observed for 3 μm output also increases. The red line shows the linear fit to the data with an extrapolation to higher pump pulse energies. (b) The laser slope efficiency for various acetylene pressures from Fig. 4(b) (purple squares) and reference [19] (magenta circles) are compared. The slope efficiency of the laser presented in the current work stays fairly consistent at ~20%.
Fig. 5
Fig. 5 The 3 μm laser beam profiles measured along the focus of a lens to determine the M2 of the laser. The curves were measured when the laser was delivering the pulse energy of 1.15 μJ.
Fig. 6
Fig. 6 (a) The beam width of the laser output measured using a 20 μm slit with HOFGLAS operating at highest pulse energy. Error bars represent fluctuations in the averages of 50 shots. The Gaussian fit for the beam width shows that the focal point lies at axial position 32.42 mm. (b) Measured M2 values for the laser operating under acetylene pressure of 10 torr at various 3 μm output pulse energies; reproduced data points are shown in red.

Metrics