Abstract

We have designed and fabricated high-performance single-photon avalanche diodes (SPADs) by using 0.18-µm high-voltage CMOS technology. Without any technology customization, the SPADs have low dark-count rate, high photon-detection probability, low afterpulsing probability, and acceptable timing jitter and breakdown voltage. Our design provides a low-cost and high-performance SPAD for various applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device

Myung-Jae Lee, Pengfei Sun, and Edoardo Charbon
Opt. Express 23(10) 13200-13209 (2015)

Low-noise single-photon avalanche diodes in 0.25 μm high-voltage CMOS technology

Fang-Ze Hsu, Jau-Yang Wu, and Sheng-Di Lin
Opt. Lett. 38(1) 55-57 (2013)

A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

Shingo Mandai, Matthew W. Fishburn, Yuki Maruyama, and Edoardo Charbon
Opt. Express 20(6) 5849-5857 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Keil and H. Bernt, “Infrared detection by avalanche discharge in silicon p-n junctions,” Solid-State Electron. 9(4), 321–325 (1966).
    [Crossref]
  2. S. Cova, A. Longoni, and A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
    [Crossref]
  3. A. Rochas, G. Ribordy, B. Furrer, P. A. Besse, and R. S. Popovic, “First passively-quenched single photon counting avalanche photodiode element integrated in a conventional CMOS process with 32ns dead time,” Proc. SPIE 4833, 107–115 (2002).
    [Crossref]
  4. E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philos Trans A Math Phys Eng Sci 372(2012), 20130100 (2014).
    [Crossref] [PubMed]
  5. F. Z. Hsu, J. Y. Wu, and S. D. Lin, “Low-noise single-photon avalanche diodes in 0.25μm high-voltage CMOS technology,” Opt. Lett. 38, 55–57 (2013).
  6. C. Veerappan and E. Charbon, “CMOS SPAD based on photo-carrier diffusion achieving PDP >40% from 440 to 580 nm at 4 V excess bias,” IEEE Photonics Technol. Lett. 27(23), 2445–2448 (2015).
    [Crossref]
  7. C. Niclass and E. Charbon, “A single photon detector array with 64x64 resolution and millimetric depth accuracy for 3D imaging,” in IEEE International Solid-State Circuits Conference (2005), pp. 363–365.
  8. C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200x96-pixel time-of-flight depth sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
    [Crossref]
  9. D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid-State Circuits 43(11), 2546–2557 (2008).
    [Crossref] [PubMed]
  10. D. U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13µm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
    [Crossref] [PubMed]
  11. J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36(18), 3672–3674 (2011).
    [Crossref] [PubMed]
  12. J. Y. Wu, P. K. Lu, Y. J. Hsiao, and S. D. Lin, “Radiometric temperature measurement with Si and InGaAs single-photon avalanche photodiode,” Opt. Lett. 39(19), 5515–5518 (2014).
    [Crossref] [PubMed]
  13. See, for example, http://velodynelidar.com/ and http://www.quanergy.com/ .
  14. A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
    [Crossref]
  15. C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
    [Crossref]
  16. S. Tisa, A. Tosi, and F. Zappa, “Fully-integrated CMOS single photon counter,” Opt. Express 15(6), 2873–2887 (2007).
    [Crossref] [PubMed]
  17. M. A. Marwick and A. G. Andreou, “Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18 μm 1.8 V CMOS process,” Electron. Lett. 44(10), 643–644 (2008).
    [Crossref]
  18. N. Faramarzpour, M. Jamal Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron Dev. 55(3), 760–767 (2008).
    [Crossref]
  19. M. J. Hsu, H. Finkelstein, and S. C. Esener, “A CMOS STI-bound single-photon avalanche diode with 27-ps timing resolution and a reduced diffusion tail,” IEEE Electron. Dev. Lett. 30(6), 641–643 (2009).
    [Crossref]
  20. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
    [Crossref]
  21. S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diodes fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20, 5849–5857 (2012).
    [Crossref] [PubMed]
  22. L. Pancheri, D. Stoppa, and G.-F. Dalla Betta, “Characterization and modeling of breakdown probability in sub-micrometer CMOS SPADs,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802608 (2014).
    [Crossref]
  23. J. Y. Wu, P. K. Lu, and S. D. Lin, “Two-dimensional photo-mapping on CMOS single-photon avalanche diodes,” Opt. Express 22(13), 16462–16471 (2014).
    [Crossref] [PubMed]
  24. K. Jradi, D. Pellion, and D. Ginhac, “Design, characterization and analysis of a 0.35 μm CMOS SPAD,” Sensors (Basel) 14(12), 22773–22784 (2014).
    [Crossref] [PubMed]
  25. F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
    [Crossref]
  26. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).

2015 (1)

C. Veerappan and E. Charbon, “CMOS SPAD based on photo-carrier diffusion achieving PDP >40% from 440 to 580 nm at 4 V excess bias,” IEEE Photonics Technol. Lett. 27(23), 2445–2448 (2015).
[Crossref]

2014 (7)

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200x96-pixel time-of-flight depth sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philos Trans A Math Phys Eng Sci 372(2012), 20130100 (2014).
[Crossref] [PubMed]

L. Pancheri, D. Stoppa, and G.-F. Dalla Betta, “Characterization and modeling of breakdown probability in sub-micrometer CMOS SPADs,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802608 (2014).
[Crossref]

K. Jradi, D. Pellion, and D. Ginhac, “Design, characterization and analysis of a 0.35 μm CMOS SPAD,” Sensors (Basel) 14(12), 22773–22784 (2014).
[Crossref] [PubMed]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

J. Y. Wu, P. K. Lu, and S. D. Lin, “Two-dimensional photo-mapping on CMOS single-photon avalanche diodes,” Opt. Express 22(13), 16462–16471 (2014).
[Crossref] [PubMed]

J. Y. Wu, P. K. Lu, Y. J. Hsiao, and S. D. Lin, “Radiometric temperature measurement with Si and InGaAs single-photon avalanche photodiode,” Opt. Lett. 39(19), 5515–5518 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2009 (2)

M. J. Hsu, H. Finkelstein, and S. C. Esener, “A CMOS STI-bound single-photon avalanche diode with 27-ps timing resolution and a reduced diffusion tail,” IEEE Electron. Dev. Lett. 30(6), 641–643 (2009).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

2008 (3)

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid-State Circuits 43(11), 2546–2557 (2008).
[Crossref] [PubMed]

M. A. Marwick and A. G. Andreou, “Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18 μm 1.8 V CMOS process,” Electron. Lett. 44(10), 643–644 (2008).
[Crossref]

N. Faramarzpour, M. Jamal Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron Dev. 55(3), 760–767 (2008).
[Crossref]

2007 (2)

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

S. Tisa, A. Tosi, and F. Zappa, “Fully-integrated CMOS single photon counter,” Opt. Express 15(6), 2873–2887 (2007).
[Crossref] [PubMed]

2003 (1)

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

2002 (1)

A. Rochas, G. Ribordy, B. Furrer, P. A. Besse, and R. S. Popovic, “First passively-quenched single photon counting avalanche photodiode element integrated in a conventional CMOS process with 32ns dead time,” Proc. SPIE 4833, 107–115 (2002).
[Crossref]

1981 (1)

S. Cova, A. Longoni, and A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

1966 (1)

G. Keil and H. Bernt, “Infrared detection by avalanche discharge in silicon p-n junctions,” Solid-State Electron. 9(4), 321–325 (1966).
[Crossref]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Andreou, A. G.

M. A. Marwick and A. G. Andreou, “Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18 μm 1.8 V CMOS process,” Electron. Lett. 44(10), 643–644 (2008).
[Crossref]

Arlt, J.

Bernt, H.

G. Keil and H. Bernt, “Infrared detection by avalanche discharge in silicon p-n junctions,” Solid-State Electron. 9(4), 321–325 (1966).
[Crossref]

Besse, P. A.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

A. Rochas, G. Ribordy, B. Furrer, P. A. Besse, and R. S. Popovic, “First passively-quenched single photon counting avalanche photodiode element integrated in a conventional CMOS process with 32ns dead time,” Proc. SPIE 4833, 107–115 (2002).
[Crossref]

Blacksberg, J.

Boso, G.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Brockherde, W.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Bronzi, D.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Buts, A.

Charbon, E.

C. Veerappan and E. Charbon, “CMOS SPAD based on photo-carrier diffusion achieving PDP >40% from 440 to 580 nm at 4 V excess bias,” IEEE Photonics Technol. Lett. 27(23), 2445–2448 (2015).
[Crossref]

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philos Trans A Math Phys Eng Sci 372(2012), 20130100 (2014).
[Crossref] [PubMed]

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diodes fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20, 5849–5857 (2012).
[Crossref] [PubMed]

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36(18), 3672–3674 (2011).
[Crossref] [PubMed]

D. U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13µm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
[Crossref] [PubMed]

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid-State Circuits 43(11), 2546–2557 (2008).
[Crossref] [PubMed]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

C. Niclass and E. Charbon, “A single photon detector array with 64x64 resolution and millimetric depth accuracy for 3D imaging,” in IEEE International Solid-State Circuits Conference (2005), pp. 363–365.

Cova, S.

S. Cova, A. Longoni, and A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Dalla Betta, G.-F.

L. Pancheri, D. Stoppa, and G.-F. Dalla Betta, “Characterization and modeling of breakdown probability in sub-micrometer CMOS SPADs,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802608 (2014).
[Crossref]

Durini, D.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Esener, S. C.

M. J. Hsu, H. Finkelstein, and S. C. Esener, “A CMOS STI-bound single-photon avalanche diode with 27-ps timing resolution and a reduced diffusion tail,” IEEE Electron. Dev. Lett. 30(6), 641–643 (2009).
[Crossref]

Fang, Q.

N. Faramarzpour, M. Jamal Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron Dev. 55(3), 760–767 (2008).
[Crossref]

Faramarzpour, N.

N. Faramarzpour, M. Jamal Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron Dev. 55(3), 760–767 (2008).
[Crossref]

Finkelstein, H.

M. J. Hsu, H. Finkelstein, and S. C. Esener, “A CMOS STI-bound single-photon avalanche diode with 27-ps timing resolution and a reduced diffusion tail,” IEEE Electron. Dev. Lett. 30(6), 641–643 (2009).
[Crossref]

Fishburn, M. W.

Furrer, B.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

A. Rochas, G. Ribordy, B. Furrer, P. A. Besse, and R. S. Popovic, “First passively-quenched single photon counting avalanche photodiode element integrated in a conventional CMOS process with 32ns dead time,” Proc. SPIE 4833, 107–115 (2002).
[Crossref]

Gani, M.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Gersbach, M.

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

Ginhac, D.

K. Jradi, D. Pellion, and D. Ginhac, “Design, characterization and analysis of a 0.35 μm CMOS SPAD,” Sensors (Basel) 14(12), 22773–22784 (2014).
[Crossref] [PubMed]

Gisin, N.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Grant, L.

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

Grant, L. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Henderson, R.

D. U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13µm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
[Crossref] [PubMed]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

Henderson, R. K.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Hsiao, Y. J.

Hsu, F. Z.

Hsu, M. J.

M. J. Hsu, H. Finkelstein, and S. C. Esener, “A CMOS STI-bound single-photon avalanche diode with 27-ps timing resolution and a reduced diffusion tail,” IEEE Electron. Dev. Lett. 30(6), 641–643 (2009).
[Crossref]

Jamal Deen, M.

N. Faramarzpour, M. Jamal Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron Dev. 55(3), 760–767 (2008).
[Crossref]

Jradi, K.

K. Jradi, D. Pellion, and D. Ginhac, “Design, characterization and analysis of a 0.35 μm CMOS SPAD,” Sensors (Basel) 14(12), 22773–22784 (2014).
[Crossref] [PubMed]

Kagami, M.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200x96-pixel time-of-flight depth sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

Keil, G.

G. Keil and H. Bernt, “Infrared detection by avalanche discharge in silicon p-n junctions,” Solid-State Electron. 9(4), 321–325 (1966).
[Crossref]

Li, D. U.

Lin, S. D.

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Lu, P. K.

Mandai, S.

Maruyama, Y.

Marwick, M. A.

M. A. Marwick and A. G. Andreou, “Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18 μm 1.8 V CMOS process,” Electron. Lett. 44(10), 643–644 (2008).
[Crossref]

Matsubara, H.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200x96-pixel time-of-flight depth sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

Niclass, C.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200x96-pixel time-of-flight depth sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

C. Niclass and E. Charbon, “A single photon detector array with 64x64 resolution and millimetric depth accuracy for 3D imaging,” in IEEE International Solid-State Circuits Conference (2005), pp. 363–365.

Ogawa, M.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200x96-pixel time-of-flight depth sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

Pancheri, L.

L. Pancheri, D. Stoppa, and G.-F. Dalla Betta, “Characterization and modeling of breakdown probability in sub-micrometer CMOS SPADs,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802608 (2014).
[Crossref]

Paschen, U.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Pellion, D.

K. Jradi, D. Pellion, and D. Ginhac, “Design, characterization and analysis of a 0.35 μm CMOS SPAD,” Sensors (Basel) 14(12), 22773–22784 (2014).
[Crossref] [PubMed]

Popovic, R. S.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

A. Rochas, G. Ribordy, B. Furrer, P. A. Besse, and R. S. Popovic, “First passively-quenched single photon counting avalanche photodiode element integrated in a conventional CMOS process with 32ns dead time,” Proc. SPIE 4833, 107–115 (2002).
[Crossref]

Ribordy, G.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

A. Rochas, G. Ribordy, B. Furrer, P. A. Besse, and R. S. Popovic, “First passively-quenched single photon counting avalanche photodiode element integrated in a conventional CMOS process with 32ns dead time,” Proc. SPIE 4833, 107–115 (2002).
[Crossref]

Richardson, J.

Richardson, J. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Rochas, A.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

A. Rochas, G. Ribordy, B. Furrer, P. A. Besse, and R. S. Popovic, “First passively-quenched single photon counting avalanche photodiode element integrated in a conventional CMOS process with 32ns dead time,” Proc. SPIE 4833, 107–115 (2002).
[Crossref]

Rossman, G. R.

Scarcella, C.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Schwartz, D. E.

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid-State Circuits 43(11), 2546–2557 (2008).
[Crossref] [PubMed]

Shepard, K. L.

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid-State Circuits 43(11), 2546–2557 (2008).
[Crossref] [PubMed]

Shirani, S.

N. Faramarzpour, M. Jamal Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron Dev. 55(3), 760–767 (2008).
[Crossref]

Soga, M.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200x96-pixel time-of-flight depth sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

Stoppa, D.

Tisa, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

S. Tisa, A. Tosi, and F. Zappa, “Fully-integrated CMOS single photon counter,” Opt. Express 15(6), 2873–2887 (2007).
[Crossref] [PubMed]

Tosi, A.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

S. Tisa, A. Tosi, and F. Zappa, “Fully-integrated CMOS single photon counter,” Opt. Express 15(6), 2873–2887 (2007).
[Crossref] [PubMed]

Veerappan, C.

C. Veerappan and E. Charbon, “CMOS SPAD based on photo-carrier diffusion achieving PDP >40% from 440 to 580 nm at 4 V excess bias,” IEEE Photonics Technol. Lett. 27(23), 2445–2448 (2015).
[Crossref]

Villa, F.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Walker, R.

Weyers, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Wu, J. Y.

Zappa, F.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

S. Tisa, A. Tosi, and F. Zappa, “Fully-integrated CMOS single photon counter,” Opt. Express 15(6), 2873–2887 (2007).
[Crossref] [PubMed]

Zou, Y.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Electron. Lett. (1)

M. A. Marwick and A. G. Andreou, “Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18 μm 1.8 V CMOS process,” Electron. Lett. 44(10), 643–644 (2008).
[Crossref]

IEEE Electron. Dev. Lett. (1)

M. J. Hsu, H. Finkelstein, and S. C. Esener, “A CMOS STI-bound single-photon avalanche diode with 27-ps timing resolution and a reduced diffusion tail,” IEEE Electron. Dev. Lett. 30(6), 641–643 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

L. Pancheri, D. Stoppa, and G.-F. Dalla Betta, “Characterization and modeling of breakdown probability in sub-micrometer CMOS SPADs,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3802608 (2014).
[Crossref]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

IEEE J. Solid-State Circuits (2)

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200x96-pixel time-of-flight depth sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid-State Circuits 43(11), 2546–2557 (2008).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (2)

C. Veerappan and E. Charbon, “CMOS SPAD based on photo-carrier diffusion achieving PDP >40% from 440 to 580 nm at 4 V excess bias,” IEEE Photonics Technol. Lett. 27(23), 2445–2448 (2015).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photonics Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

IEEE Trans. Electron Dev. (1)

N. Faramarzpour, M. Jamal Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,” IEEE Trans. Electron Dev. 55(3), 760–767 (2008).
[Crossref]

J. Mod. Opt. (1)

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Philos Trans A Math Phys Eng Sci (1)

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philos Trans A Math Phys Eng Sci 372(2012), 20130100 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Rochas, G. Ribordy, B. Furrer, P. A. Besse, and R. S. Popovic, “First passively-quenched single photon counting avalanche photodiode element integrated in a conventional CMOS process with 32ns dead time,” Proc. SPIE 4833, 107–115 (2002).
[Crossref]

Rev. Sci. Instrum. (2)

S. Cova, A. Longoni, and A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Sensors (Basel) (1)

K. Jradi, D. Pellion, and D. Ginhac, “Design, characterization and analysis of a 0.35 μm CMOS SPAD,” Sensors (Basel) 14(12), 22773–22784 (2014).
[Crossref] [PubMed]

Solid-State Electron. (1)

G. Keil and H. Bernt, “Infrared detection by avalanche discharge in silicon p-n junctions,” Solid-State Electron. 9(4), 321–325 (1966).
[Crossref]

Other (3)

C. Niclass and E. Charbon, “A single photon detector array with 64x64 resolution and millimetric depth accuracy for 3D imaging,” in IEEE International Solid-State Circuits Conference (2005), pp. 363–365.

See, for example, http://velodynelidar.com/ and http://www.quanergy.com/ .

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structures of SPADs A (a), and B (b).

Fig. 2
Fig. 2

Bias-dependent DCRs of SPADs A (a) and B (b) and their I-V curves in the insets.

Fig. 3
Fig. 3

Measured bias-dependent PDP spectra for SPADs A (a), and B (b).

Fig. 4
Fig. 4

Measured 720-nm timing jitters for SPADs A (a), and B (b) at various bias voltages.

Fig. 5
Fig. 5

Simulated doping concentration profiles and electric field distributions in depth for SPAD A in (a) and SPAD B in (b).

Fig. 6
Fig. 6

Measured and simulated temperature-dependent breakdown voltages for SPAD A in (a) and SPAD B in (b).

Metrics