Abstract

An all-fiber high-power and broad-frequency-band near-shot-noise-limited kHz-linewidth (Δν ~1.7 kHz) single-frequency master-oscillator power amplifier (MOPA) laser at 1.5 μm is demonstrated. To significantly suppress the intensity noise of seed laser and mitigate the detrimental effects of amplified spontaneous emission and stimulated Brillouin scattering in fiber amplifiers, more than 23 W of a stable low noise single-frequency laser output is achieved with a relative intensity noise of < –150 dB/Hz @0.5 mW (near to the shot-noise limit: –152.9 dB/Hz) in the frequency band from 0.1 to 50 MHz. It is believed that the achieved laser performance of ultra-low intensity noise and high-power output make the laser source become a promising candidate in further applications, such as cold atom optical lattice, quantum key distribution, and gravitational wave detection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm

Changsheng Yang, Xianchao Guan, Qilai Zhao, Wei Lin, Can Li, Jiulin Gan, Qi Qian, Zhouming Feng, Zhongmin Yang, and Shanhui Xu
Opt. Express 26(10) 12863-12869 (2018)

High-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser

Jing Wang, Yubin Hou, Qian Zhang, Dongchen Jin, Ruoyu Sun, Hongxing Shi, Jiang Liu, and Pu Wang
Opt. Express 23(22) 28978-28984 (2015)

Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb3+-doped phosphate fiber laser at 978 nm

Zhenpeng Huang, Huaqiu Deng, Changsheng Yang, Qilai Zhao, Yuanfei Zhang, Yuning Zhang, Zhouming Feng, Zhongmin Yang, Mingying Peng, and Shanhui Xu
Opt. Express 25(2) 1535-1541 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012).
    [Crossref] [PubMed]
  2. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  3. X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).
  4. R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
    [Crossref] [PubMed]
  5. Y. Xu, C. Qu, M. Gong, and C. Zhang, “Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices,” Phys. Rev. A 89(1), 219–228 (2014).
    [Crossref]
  6. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
    [Crossref] [PubMed]
  7. A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
    [Crossref] [PubMed]
  8. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(3), 1083 (2012).
    [Crossref] [PubMed]
  9. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
    [Crossref]
  10. P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express 20(10), 10617–10634 (2012).
    [Crossref] [PubMed]
  11. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref] [PubMed]
  12. C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
    [Crossref] [PubMed]
  13. X. Wang, P. Zhou, H. Xiao, H. Ma, and Z. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
    [Crossref]
  14. G. Guiraud, N. Traynor, and G. Santarelli, “High-power and low-intensity noise laser at 1064 nm,” Opt. Lett. 41(17), 4040–4043 (2016).
    [Crossref] [PubMed]
  15. L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
    [Crossref] [PubMed]
  16. S. Pradhan, G. E. Town, D. Wilson, and K. J. Grant, “Intensity noise reduction in a multiwavelength distributed Bragg reflector fiber laser,” Opt. Lett. 31(20), 2963–2965 (2006).
    [Crossref] [PubMed]
  17. P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett. 34(19), 2912–2914 (2009).
    [Crossref] [PubMed]
  18. Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
    [Crossref]
  19. C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
    [Crossref] [PubMed]
  20. J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357–366 (2017).
    [Crossref] [PubMed]
  21. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
    [Crossref] [PubMed]
  22. A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [Crossref]
  23. M. Hildebrandt, S. Büsche, P. Wessels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970–15979 (2008).
    [Crossref] [PubMed]
  24. M. Fleyer, S. Heerschap, G. A. Cranch, and M. Horowitz, “Noise induced in optical fibers by double Rayleigh scattering of a laser with a 1/fν frequency noise,” Opt. Lett. 41(6), 1265–1268 (2016).
    [Crossref] [PubMed]
  25. C. Yang, S. Xu, D. Chen, Y. Zhang, Q. Zhao, C. Li, K. Zhou, Z. Feng, J. Gan, and Z. Yang, “52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser,” J. Opt. 18(5), 055801 (2016).
    [Crossref]
  26. C. Li, S. Xu, Z. Feng, Y. Xiao, S. Mo, C. Yang, W. Zhang, D. Chen, and Z. Yang, “The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm,” Laser Phys. Lett. 11(2), 025104 (2014).
    [Crossref]
  27. Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
    [Crossref] [PubMed]
  28. P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett. 34(19), 2912–2914 (2009).
    [Crossref] [PubMed]
  29. J. Junker, P. Oppermann, and B. Willke, “Shot-noise-limited laser power stabilization for the AEI 10 m Prototype interferometer,” Opt. Lett. 42(4), 755–758 (2017).
    [Crossref] [PubMed]
  30. E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
    [Crossref]

2017 (3)

2016 (4)

2015 (3)

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

2014 (3)

C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
[Crossref] [PubMed]

Y. Xu, C. Qu, M. Gong, and C. Zhang, “Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices,” Phys. Rev. A 89(1), 219–228 (2014).
[Crossref]

C. Li, S. Xu, Z. Feng, Y. Xiao, S. Mo, C. Yang, W. Zhang, D. Chen, and Z. Yang, “The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm,” Laser Phys. Lett. 11(2), 025104 (2014).
[Crossref]

2013 (4)

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

2010 (1)

2009 (2)

2008 (2)

M. Hildebrandt, S. Büsche, P. Wessels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970–15979 (2008).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

2006 (1)

2002 (1)

2001 (1)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

Abramski, K. M.

Altin, P. A.

Andersen, U. L.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(3), 1083 (2012).
[Crossref] [PubMed]

Antonczak, A.

Aspelmeyer, M.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref] [PubMed]

Bai, X.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

Bennetts, S.

Bogan, C.

Büsche, S.

Cai, H. W.

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref] [PubMed]

Chelkowski, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Chen, D.

C. Yang, S. Xu, D. Chen, Y. Zhang, Q. Zhao, C. Li, K. Zhou, Z. Feng, J. Gan, and Z. Yang, “52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser,” J. Opt. 18(5), 055801 (2016).
[Crossref]

C. Li, S. Xu, Z. Feng, Y. Xiao, S. Mo, C. Yang, W. Zhang, D. Chen, and Z. Yang, “The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm,” Laser Phys. Lett. 11(2), 025104 (2014).
[Crossref]

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[Crossref] [PubMed]

Close, J. D.

Cranch, G. A.

Dajani, I.

Danzmann, K.

Debs, J. E.

Delavaux, J.

Deng, H.

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Duarte, P. M.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Fang, Z. J.

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

Feng, Z.

Feng, Z. M.

Filip, R.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(3), 1083 (2012).
[Crossref] [PubMed]

Fleyer, M.

Floissat, F.

Franzen, A.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Frede, M.

Fu, S.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

Gan, J.

C. Yang, S. Xu, D. Chen, Y. Zhang, Q. Zhao, C. Li, K. Zhou, Z. Feng, J. Gan, and Z. Yang, “52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser,” J. Opt. 18(5), 055801 (2016).
[Crossref]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

Gong, M.

Y. Xu, C. Qu, M. Gong, and C. Zhang, “Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices,” Phys. Rev. A 89(1), 219–228 (2014).
[Crossref]

Gossler, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Gouhier, B.

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Grant, K. J.

Gröblacher, S.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref] [PubMed]

Guiraud, G.

Hage, B.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Hart, R. A.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Heerschap, S.

Hildebrandt, M.

Hill, J. T.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref] [PubMed]

Horowitz, M.

Huang, L.

Huang, X.

Hulet, R. G.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Huse, D. A.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Jiang, Z.

Jiang, Z. H.

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Junker, J.

Kaczmarek, P.

Khatami, E.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Kim, H.

King, P.

Kracht, D.

Kuhn, C. C. N.

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Kwee, P.

Lassen, M.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(3), 1083 (2012).
[Crossref] [PubMed]

Lastzka, N.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Leng, J.

Leverrier, A.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Li, C.

Li, L.

Li, R.

Lin, W.

Liu, T.

Liu, X.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Liu, Z.

X. Wang, P. Zhou, H. Xiao, H. Ma, and Z. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Ma, H.

X. Wang, P. Zhou, H. Xiao, H. Ma, and Z. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Ma, P.

Madsen, L. S.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(3), 1083 (2012).
[Crossref] [PubMed]

McDonald, G. D.

Mehmet, M.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Mo, S.

C. Li, S. Xu, Z. Feng, Y. Xiao, S. Mo, C. Yang, W. Zhang, D. Chen, and Z. Yang, “The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm,” Laser Phys. Lett. 11(2), 025104 (2014).
[Crossref]

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[Crossref] [PubMed]

Oppermann, P.

Painter, O.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref] [PubMed]

Paiva, T.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Pan, Z. Q.

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

Peng, M.

Pöld, J.

Pradhan, S.

Pulford, B.

Puncken, O.

Qu, C.

Y. Xu, C. Qu, M. Gong, and C. Zhang, “Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices,” Phys. Rev. A 89(1), 219–228 (2014).
[Crossref]

Qu, R. H.

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

Robin, C.

Robins, N. P.

Rønnekleiv, E.

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

Rota-Rodrigo, S.

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref] [PubMed]

Sané, S. S.

Santarelli, G.

Savage, R. L.

Scalettar, R. T.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Schnabel, R.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Seifert, F.

Sheng, Q.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

Shi, W.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

Sobon, G.

Sotor, J.

Toulouse, J.

Town, G. E.

Traynor, N.

Trivedi, N.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Usenko, V. C.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(3), 1083 (2012).
[Crossref] [PubMed]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Wang, X.

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref] [PubMed]

X. Wang, P. Zhou, H. Xiao, H. Ma, and Z. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Wessels, P.

Willke, B.

Wilson, D.

Winkelmann, L.

Wu, H.

Xiao, H.

X. Wang, P. Zhou, H. Xiao, H. Ma, and Z. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Xiao, Y.

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

C. Li, S. Xu, Z. Feng, Y. Xiao, S. Mo, C. Yang, W. Zhang, D. Chen, and Z. Yang, “The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm,” Laser Phys. Lett. 11(2), 025104 (2014).
[Crossref]

Xu, S.

Xu, S. H.

Xu, Y.

Y. Xu, C. Qu, M. Gong, and C. Zhang, “Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices,” Phys. Rev. A 89(1), 219–228 (2014).
[Crossref]

Yang, C.

Yang, F.

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

Yang, T. L.

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

Yang, Z.

Yang, Z. M.

Yao, J.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

Ye, Q.

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

Yeniay, A.

Zhang, C.

Y. Xu, C. Qu, M. Gong, and C. Zhang, “Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices,” Phys. Rev. A 89(1), 219–228 (2014).
[Crossref]

Zhang, H.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

Zhang, Q. Y.

Zhang, W.

C. Li, S. Xu, Z. Feng, Y. Xiao, S. Mo, C. Yang, W. Zhang, D. Chen, and Z. Yang, “The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm,” Laser Phys. Lett. 11(2), 025104 (2014).
[Crossref]

Zhang, W. N.

Zhang, Y.

C. Yang, S. Xu, D. Chen, Y. Zhang, Q. Zhao, C. Li, K. Zhou, Z. Feng, J. Gan, and Z. Yang, “52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser,” J. Opt. 18(5), 055801 (2016).
[Crossref]

Zhao, J.

Zhao, Q.

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

C. Yang, S. Xu, D. Chen, Y. Zhang, Q. Zhao, C. Li, K. Zhou, Z. Feng, J. Gan, and Z. Yang, “52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser,” J. Opt. 18(5), 055801 (2016).
[Crossref]

Zhou, J.

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

Zhou, K.

Zhou, P.

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref] [PubMed]

X. Wang, P. Zhou, H. Xiao, H. Ma, and Z. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

IEEE Photonics J. (1)

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

J. Lightwave Technol. (1)

J. Opt. (1)

C. Yang, S. Xu, D. Chen, Y. Zhang, Q. Zhao, C. Li, K. Zhou, Z. Feng, J. Gan, and Z. Yang, “52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser,” J. Opt. 18(5), 055801 (2016).
[Crossref]

Laser Phys. (1)

Z. Q. Pan, J. Zhou, F. Yang, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer,” Laser Phys. 23(3), 035105 (2013).
[Crossref]

Laser Phys. Lett. (2)

C. Li, S. Xu, Z. Feng, Y. Xiao, S. Mo, C. Yang, W. Zhang, D. Chen, and Z. Yang, “The ASE noise of a Yb3+-doped phosphate fiber single-frequency laser at 1083 nm,” Laser Phys. Lett. 11(2), 025104 (2014).
[Crossref]

X. Wang, P. Zhou, H. Xiao, H. Ma, and Z. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Nat. Commun. (1)

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(3), 1083 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Nature (2)

R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms,” Nature 519(7542), 211–214 (2015).
[Crossref] [PubMed]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref] [PubMed]

Opt. Express (7)

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[Crossref] [PubMed]

S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012).
[Crossref] [PubMed]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express 20(10), 10617–10634 (2012).
[Crossref] [PubMed]

J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357–366 (2017).
[Crossref] [PubMed]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
[Crossref] [PubMed]

M. Hildebrandt, S. Büsche, P. Wessels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970–15979 (2008).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

Opt. Lett. (10)

M. Fleyer, S. Heerschap, G. A. Cranch, and M. Horowitz, “Noise induced in optical fibers by double Rayleigh scattering of a laser with a 1/fν frequency noise,” Opt. Lett. 41(6), 1265–1268 (2016).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett. 34(19), 2912–2914 (2009).
[Crossref] [PubMed]

J. Junker, P. Oppermann, and B. Willke, “Shot-noise-limited laser power stabilization for the AEI 10 m Prototype interferometer,” Opt. Lett. 42(4), 755–758 (2017).
[Crossref] [PubMed]

C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
[Crossref] [PubMed]

G. Guiraud, N. Traynor, and G. Santarelli, “High-power and low-intensity noise laser at 1064 nm,” Opt. Lett. 41(17), 4040–4043 (2016).
[Crossref] [PubMed]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref] [PubMed]

S. Pradhan, G. E. Town, D. Wilson, and K. J. Grant, “Intensity noise reduction in a multiwavelength distributed Bragg reflector fiber laser,” Opt. Lett. 31(20), 2963–2965 (2006).
[Crossref] [PubMed]

P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett. 34(19), 2912–2914 (2009).
[Crossref] [PubMed]

Phys. Rev. A (1)

Y. Xu, C. Qu, M. Gong, and C. Zhang, “Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices,” Phys. Rev. A 89(1), 219–228 (2014).
[Crossref]

Phys. Rev. Lett. (1)

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experiment setup of high-power ultra-low intensity noise single-frequency MOPA laser. (HR-FBG: high-reflection fiber Bragg grating; PM-FBG: polarization-maintaining fiber Bragg grating; EYPF: Er3+/Yb3+-codoped phosphate fiber; WDM: wavelength division multiplexer; ISO: isolator; LD: laser diode; VOA: variable optical attenuator; PC: polarization controller; SOA: semiconductor optical amplifier; BPF: band-pass filter; CMS: cladding-mode stripper; EYDF: Er3+/Yb3+-codoped double cladding silica fiber; HISO: high-power isolator; DWDM: dense wavelength division multiplexer).
Fig. 2
Fig. 2 (a) Measured RINs of the seed laser without or with noise reduction, and the SNL are shown for comparison in the frequency band of 0–50 MHz. Inset: fine graph of RINs in the frequency band of 0–1 MHz. (b) Measured RINs of the pre-amplifier with different pumping methods, and the SNL are shown for comparison.
Fig. 3
Fig. 3 (a) Output spectra of the noise-suppression seed laser and the pre-amplifier without or with a DWDM installed. (b) Monitored RINs of the power amplifier with the total length of 7.3 m at different output powers in the frequency band of 0 –50 MHz.
Fig. 4
Fig. 4 (a) Output power and backward propagating power versus the pump power. Inset: output spectra of the backward propagating light with different output powers. (b) Output spectrum of the MOPA laser. Inset: power stability of the MOPA laser for 2 hours.
Fig. 5
Fig. 5 (a) Measured RINs of the free running, the MOPA laser, and the SNL are also shown for comparison in the frequency band of 0–50 MHz. Inset: fine graph of RINs in the frequency band of 0–1 MHz. (b) Measured self-heterodyne spectra of the noise-suppression seed laser and the MOPA laser.

Metrics