Abstract

We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses

Jia Qi, Peng Wang, Yang Liao, Wei Chu, Zhengming Liu, Zhaohui Wang, Lingling Qiao, and Ya Cheng
Opt. Mater. Express 6(8) 2554-2559 (2016)

Embedded optical waveguides fabricated in SF10 glass by low-repetition-rate ultrafast laser

Jing Bai, Xuewen Long, Xin Liu, Guangwen Huo, Wei Zhao, Razvan Stoian, Rongqing Hui, and Guanghua Cheng
Appl. Opt. 52(30) 7288-7294 (2013)

Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing

Weijia Yang, Costantino Corbari, Peter G. Kazansky, Koichi Sakaguchi, and Isabel C.S. Carvalho
Opt. Express 16(20) 16215-16226 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  2. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
    [Crossref]
  3. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
    [Crossref]
  4. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
    [Crossref]
  5. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
    [Crossref] [PubMed]
  6. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
    [Crossref] [PubMed]
  7. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A Mater. Sci. Process. 77(1), 109–111 (2003).
    [Crossref]
  8. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001).
    [Crossref] [PubMed]
  9. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30(9), 1060–1062 (2005).
    [Crossref] [PubMed]
  10. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
    [Crossref] [PubMed]
  11. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  12. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
    [Crossref]
  13. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
    [Crossref]
  14. W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
    [Crossref]
  15. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
    [Crossref]
  16. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
    [Crossref]
  17. A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254(4), 1121–1125 (2007).
    [Crossref]
  18. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
    [Crossref] [PubMed]
  19. S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
    [Crossref] [PubMed]
  20. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol. 21(1), 246–253 (2003).
    [Crossref]
  21. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13(6), 1999–2006 (2005).
    [Crossref] [PubMed]
  22. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
    [Crossref] [PubMed]
  23. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
    [Crossref]
  24. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [Crossref]
  25. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
    [Crossref]
  26. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  27. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  28. D. Beckmann, D. Schnitzler, D. Schaefer, J. Gottmann, and I. Kelbassa, “Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation,” Opt. Express 19(25), 25418–25425 (2011).
    [Crossref] [PubMed]
  29. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd: YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 9 (2016).
    [Crossref]
  30. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
    [Crossref]
  31. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref] [PubMed]
  32. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [Crossref] [PubMed]
  33. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
    [Crossref] [PubMed]
  34. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
    [Crossref] [PubMed]
  35. Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
    [Crossref] [PubMed]
  36. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [Crossref] [PubMed]
  37. G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, and O. K. Ersoy, “Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33(2), 209–218 (1994).
    [Crossref] [PubMed]
  38. B. Y. Gu and G. Z. Yang, “On the phase retrieval problem in optical and electronic microscopy,” Acta Opt. Sin. 1(6), 517–522 (1981).
  39. S. H. Yan, “Research on the weighted Yang-Gu algorithm,” Acta Photonica Sin. 36(3), 530 (2007).
  40. X. Yu, K. Q. Chen, and Y. Zhang, “Optimization design of diffractive phase elements for beam shaping,” Appl. Opt. 50(31), 5938–5943 (2011).
    [Crossref] [PubMed]
  41. C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
    [Crossref]
  42. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
    [Crossref]
  43. G. Milewski, D. Engström, and J. Bengtsson, “Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators,” Appl. Opt. 46(1), 95–105 (2007).
    [Crossref] [PubMed]
  44. Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
    [Crossref] [PubMed]
  45. H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36(13), 2471–2473 (2011).
    [Crossref] [PubMed]

2017 (1)

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

2016 (3)

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd: YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 9 (2016).
[Crossref]

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

2012 (4)

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

2011 (5)

2010 (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

2009 (3)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

2008 (4)

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

2007 (4)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254(4), 1121–1125 (2007).
[Crossref]

S. H. Yan, “Research on the weighted Yang-Gu algorithm,” Acta Photonica Sin. 36(3), 530 (2007).

G. Milewski, D. Engström, and J. Bengtsson, “Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators,” Appl. Opt. 46(1), 95–105 (2007).
[Crossref] [PubMed]

2006 (2)

Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
[Crossref] [PubMed]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

2005 (3)

2004 (1)

2003 (5)

C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol. 21(1), 246–253 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[Crossref]

2001 (2)

1996 (2)

1994 (1)

1981 (1)

B. Y. Gu and G. Z. Yang, “On the phase retrieval problem in optical and electronic microscopy,” Acta Opt. Sin. 1(6), 517–522 (1981).

Ams, M.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Arai, A.

Beckmann, D.

Benayas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Bengtsson, J.

Bennion, I.

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
[Crossref] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Bongioanni, I.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Borrelli, N. F.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Cerullo, G.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Chen, D.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Chen, K.

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

Chen, K. Q.

Chen, Q. D.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Cheng, Y.

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Chu, W.

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

Crespi, A.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Davis, K. M.

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

De Silvestri, S.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Diez-Blanco, V.

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254(4), 1121–1125 (2007).
[Crossref]

Dong, B. Z.

Dubov, M.

S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
[Crossref] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Eaton, S.

Ebendorff-Heidepriem, H.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

Engström, D.

Ersoy, O. K.

Ferrer, A.

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254(4), 1121–1125 (2007).
[Crossref]

Florea, C.

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
[Crossref]

Fuerbach, A.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

Fujimoto, J. G.

Gahagan, K. T.

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Gottmann, J.

Gross, S.

S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

Gu, B. Y.

Gu, M.

Guo, C.

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

Hayden, J. S.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[Crossref]

Herman, P.

Hirao, K.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Ippen, E. P.

Itoh, K.

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
[Crossref] [PubMed]

Jaque, D.

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Jia, B.

Jia, Y.

Jipa, F.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd: YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 9 (2016).
[Crossref]

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Kar, A. K.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Kelbassa, I.

Khrushchev, I.

Kowalevicz, A. M.

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Kuan, K.

Lancaster, D. G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

Laporta, P.

Li, E.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Li, Y.

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

Liao, Y.

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Lin, H.

Liu, H.

Liu, S. T.

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

Liu, Z. J.

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

Lopez, C.

Luo, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Marangoni, M.

Marshall, G. D.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
[Crossref]

Mataloni, P.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mezentsev, V.

Mezentsev, V. K.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Midorikawa, K.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Miese, C. T.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Milewski, G.

Minoshima, K.

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Mitchell, J.

Miura, K.

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Monro, T. M.

Nishii, J.

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Okhrimchuk, A.

Okhrimchuk, A. G.

Osellame, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

Palmer, G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Pavel, N.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd: YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 9 (2016).
[Crossref]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Polli, D.

Qi, J.

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

Qiao, L.

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

Ramponi, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

Richardson, K.

Richardson, M.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Ruiz, A.

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254(4), 1121–1125 (2007).
[Crossref]

Salamu, G.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd: YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 9 (2016).
[Crossref]

Sansoni, L.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Schaefer, D.

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Schnitzler, D.

Sciarrino, F.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Shah, L.

Sharma, V.

Shen, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Shestakov, A.

Shestakov, A. V.

Siegel, J.

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254(4), 1121–1125 (2007).
[Crossref]

Solis, J.

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254(4), 1121–1125 (2007).
[Crossref]

Song, J.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Streltsov, A. M.

Sugimoto, N.

Sugioka, K.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Sun, H. B.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Swartzlander, G. A.

Taccheo, S.

Tan, J. B.

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

Toma, T.

Torchia, G. A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Vallone, G.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Vázquez de Aldana, J. R.

Wang, P.

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

Wang, Z.

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

Watanabe, W.

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
[Crossref] [PubMed]

Wei, C.

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Williams, R. J.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Winick, K. A.

Withford, M. J.

S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

Wu, Q.

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

Xia, H.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Xu, Z.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Yamada, K.

Yan, S. H.

S. H. Yan, “Research on the weighted Yang-Gu algorithm,” Acta Photonica Sin. 36(3), 530 (2007).

Yang, G. Z.

Yu, X.

Zamfirescu, M.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd: YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 9 (2016).
[Crossref]

Zhan, Q.

Zhang, Y.

Zhang, Y. L.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Zhuang, J. Y.

Zoubir, A.

Acta Opt. Sin. (1)

B. Y. Gu and G. Z. Yang, “On the phase retrieval problem in optical and electronic microscopy,” Acta Opt. Sin. 1(6), 517–522 (1981).

Acta Photonica Sin. (1)

S. H. Yan, “Research on the weighted Yang-Gu algorithm,” Acta Photonica Sin. 36(3), 530 (2007).

Appl. Opt. (3)

Appl. Phys. A Mater. Sci. Process. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Appl. Phys. Lett. (2)

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82(15), 2371–2373 (2003).
[Crossref]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Appl. Surf. Sci. (1)

A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, “Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass,” Appl. Surf. Sci. 254(4), 1121–1125 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[Crossref]

IEEE Photonics J. (1)

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd: YAG by direct femtosecond-laser writing,” IEEE Photonics J. 8(1), 9 (2016).
[Crossref]

Int. J. Appl. Glass Sci. (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Lab Chip (1)

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (4)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1–2), 100–111 (2008).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Nano Today (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Nat. Commun. (1)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

Opt. Lasers Eng. (1)

C. Guo, C. Wei, J. B. Tan, K. Chen, S. T. Liu, Q. Wu, and Z. J. Liu, “A review of iterative phase retrieval for measurement and encryption,” Opt. Lasers Eng. 89, 2–12 (2017).
[Crossref]

Opt. Lett. (10)

Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
[Crossref] [PubMed]

H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36(13), 2471–2473 (2011).
[Crossref] [PubMed]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
[Crossref] [PubMed]

A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001).
[Crossref] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30(9), 1060–1062 (2005).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
[Crossref] [PubMed]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Liao, J. Qi, P. Wang, W. Chu, Z. Wang, L. Qiao, and Y. Cheng, “Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam,” Sci. Rep. 6(28790), 28790 (2016).
[Crossref] [PubMed]

Science (1)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagrams for transverse writing of depressed cladding waveguides. (a) Circular cladding composed of dozens of parallel filaments inscribed line by line using an ellipsoidal focal spot. (b) Square cladding with four sides inscribed one by one using a slit-shaped focus. (c) Circular cladding formed in a single scan using the tilted longitudinal annular ring-shaped focal intensity distribution. Insets: phase masks used for focal field engineering. The sample is translated along x-axis.
Fig. 2
Fig. 2 Schematic illustration of the experimental setup. HW: half-wave plate. P: Glan-Taylor polarizer. L1, L2, L3, L4: lenses with different focal lengths described in the text. SLM: spatial light modulator. M1, M2, M3, M4: mirrors. A: aperture. T: tube lens. CCD: charge coupled device. Insets: the intensity distribution of focal fields with a shape of ellipsoidal spot and oblique longitudinal annular ring as a result of a uniform and a specially designed phase mask loaded onto a SLM, respectively. Sample is translated along x-axis.
Fig. 3
Fig. 3 Side views of targeted focal profiles with the form of piecewise annular ring (a) and continuous annular ring (e). Phase masks are presented in (b) and (f). 3D isosurface images (the isosurface is given by the intensity at 30% of the peak value) are shown in (c) and (g). The corresponding simulated 2D intensity distribution images in the planes viewed in the directions of the yellow arrows are shown in (d) and (h). It’s worth noting that in (d) only the lower left arc should be visible, but we move other three arcs to the same view plane to facilitate observation of the entire intensity annular ring. The sample is translated along x-axis. Scale bar: 5 μm.
Fig. 4
Fig. 4 Optical micrographs and guided modes of a waveguide written through the piecewise annular ring-shaped focal field. (a) Top view of the waveguide. (b) Cross-section of the depressed cladding. The guided region is indicated within the yellow dotted circle. (c), (d) 2D intensity distribution images of the guided modes at 785 nm and 1550 nm, respectively. The mode profile in horizontal and vertical patterns are presented in (d). The resulting 1/e2 mode field diameters are ∆h = 17.63 μm and ∆v = 17.25 μm, respectively. (e) Top-view image of a 10-mm-long waveguide showing the decay of scattered light along the waveguide. The He-Ne laser is incident on the waveguide from left as indicated by the red arrow.
Fig. 5
Fig. 5 Optical micrograph and guided modes of a waveguide written through the continuous annular ring-shaped focal field. (a) Cross-section of the depressed cladding. The guided region is indicated within the yellow dotted circle. (b), (c) 2D intensity distribution images of the guided modes at 785 nm and 1550 nm, respectively.

Metrics