Abstract

Controlling light emission out of subwavelength nanoslit/aperture structures is of great important for highly integrated photonic circuits. Here we propose a new method to achieve direction-tunable emission based on a compact metallic microcavity with double nanoslit. Our method combines the principles of Young’s interference and surface plasmon polaritons interference. We show that the direction of the far-field beam can be controlled over a wide range of angles by manipulating the frequency and relative phase of light arriving at the two slits, which holds promise for applications in the ultracompact optoelectronic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Periodic dielectric bars assisted enhanced transmission and directional light emission from a single subwavelength slit

Zu-Bin Li, Jian-Guo Tian, Wen-Yuan Zhou, Wei-Ping Zang, and Chunping Zhang
Opt. Express 14(18) 8037-8042 (2006)

Subwavelength interference of light on structured surfaces

Xiangang Luo, DinPing Tsai, Min Gu, and Minghui Hong
Adv. Opt. Photon. 10(4) 757-842 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
    [Crossref]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  3. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
    [Crossref]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  6. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [Crossref] [PubMed]
  7. W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, “Grating-assisted enhanced optical transmission through a seamless gold film,” Opt. Express 22(5), 5416–5421 (2014).
    [Crossref] [PubMed]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  9. W.-J. Lee, J.-B. You, K. Kwon, B. Park, and K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
    [Crossref]
  10. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [Crossref] [PubMed]
  11. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
    [Crossref] [PubMed]
  12. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
    [Crossref]
  13. F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
    [Crossref]
  14. W. Dai and C. M. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82(4), 045427 (2010).
    [Crossref]
  15. Y. Lee, K. Hoshino, A. Alù, and X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
    [Crossref]
  16. E. Y. Song, H. Kim, W. Y. Choi, and B. Lee, “Active directional beaming by mechanical actuation of double-sided plasmonic surface gratings,” Opt. Lett. 38(19), 3827–3829 (2013).
    [Crossref] [PubMed]
  17. Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
    [Crossref] [PubMed]
  18. K. Kim, S.-Y. Lee, H. Yun, J.-B. Park, and B. Lee, “Switchable beaming from a nanoslit with metallic gratings controlled by the phase difference between incident beams,” Opt. Express 22(5), 5465–5473 (2014).
    [Crossref] [PubMed]
  19. Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
    [Crossref] [PubMed]
  20. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
    [Crossref] [PubMed]
  21. A. Haddadpour and G. Veronis, “Microcavity enhanced directional transmission through a subwavelength plasmonic slit,” Opt. Express 23(5), 5789–5799 (2015).
    [Crossref] [PubMed]
  22. J. Liu, L. Wang, B. Sun, H. Li, and X. Zhai, “Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity,” Opt. Laser Technol. 69, 71–76 (2015).
    [Crossref]
  23. W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
    [Crossref] [PubMed]
  24. X. Zhang, Z. Li, J. Chen, S. Yue, and Q. Gong, “A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit,” Opt. Express 21(12), 14548–14554 (2013).
    [Crossref] [PubMed]
  25. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
    [Crossref] [PubMed]
  26. H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15(18), 11321–11327 (2007).
    [Crossref] [PubMed]
  27. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
    [Crossref] [PubMed]
  28. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009).
    [Crossref]
  29. T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
    [Crossref]
  30. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
    [Crossref]
  31. X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritions with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).
    [Crossref]
  32. N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
    [Crossref]
  33. J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19(27), 26463–26469 (2011).
    [Crossref] [PubMed]

2015 (3)

A. Haddadpour and G. Veronis, “Microcavity enhanced directional transmission through a subwavelength plasmonic slit,” Opt. Express 23(5), 5789–5799 (2015).
[Crossref] [PubMed]

J. Liu, L. Wang, B. Sun, H. Li, and X. Zhai, “Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity,” Opt. Laser Technol. 69, 71–76 (2015).
[Crossref]

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (4)

2012 (3)

Y. Lee, K. Hoshino, A. Alù, and X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[Crossref]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
[Crossref]

2011 (3)

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19(27), 26463–26469 (2011).
[Crossref] [PubMed]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritions with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).
[Crossref]

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[Crossref]

2010 (1)

W. Dai and C. M. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82(4), 045427 (2010).
[Crossref]

2009 (2)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009).
[Crossref]

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

2008 (2)

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
[Crossref] [PubMed]

2007 (4)

H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15(18), 11321–11327 (2007).
[Crossref] [PubMed]

H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
[Crossref] [PubMed]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2005 (2)

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

2004 (1)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

2003 (2)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

2000 (1)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[Crossref]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Alù, A.

Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[Crossref] [PubMed]

Y. Lee, K. Hoshino, A. Alù, and X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[Crossref]

Bai, B.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritions with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[Crossref]

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Chen, J.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

X. Zhang, Z. Li, J. Chen, S. Yue, and Q. Gong, “A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit,” Opt. Express 21(12), 14548–14554 (2013).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19(27), 26463–26469 (2011).
[Crossref] [PubMed]

Chen, X.

Chen, Y.

Choi, W. Y.

Dai, S.

Dai, W.

W. Dai and C. M. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82(4), 045427 (2010).
[Crossref]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Dong, X.

Du, C.

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Fang, L.

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

Feng, Q.

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

Gai, H.

Gan, D.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Gao, H.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gong, H.

Gong, Q.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

X. Zhang, Z. Li, J. Chen, S. Yue, and Q. Gong, “A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit,” Opt. Express 21(12), 14548–14554 (2013).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19(27), 26463–26469 (2011).
[Crossref] [PubMed]

Gordon, R.

Gösele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[Crossref]

Haddadpour, A.

Hao, F.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[Crossref]

Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Hoshino, K.

Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[Crossref] [PubMed]

Y. Lee, K. Hoshino, A. Alù, and X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[Crossref]

Hu, C.

N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
[Crossref]

Jin, G.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritions with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).
[Crossref]

Kim, H.

E. Y. Song, H. Kim, W. Y. Choi, and B. Lee, “Active directional beaming by mechanical actuation of double-sided plasmonic surface gratings,” Opt. Lett. 38(19), 3827–3829 (2013).
[Crossref] [PubMed]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[Crossref]

Kim, K.

Kim, S.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[Crossref]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Kwon, K.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, and K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[Crossref]

Lai, Z.

N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
[Crossref]

Lee, B.

Lee, S.-Y.

Lee, W.-J.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, and K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[Crossref]

Lee, Y.

Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[Crossref] [PubMed]

Y. Lee, K. Hoshino, A. Alù, and X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[Crossref]

Lei, M.

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, H.

J. Liu, L. Wang, B. Sun, H. Li, and X. Zhai, “Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity,” Opt. Laser Technol. 69, 71–76 (2015).
[Crossref]

Li, Q.

Li, X.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritions with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).
[Crossref]

Li, Z.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

X. Zhang, Z. Li, J. Chen, S. Yue, and Q. Gong, “A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit,” Opt. Express 21(12), 14548–14554 (2013).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19(27), 26463–26469 (2011).
[Crossref] [PubMed]

Liao, H.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Lim, Y.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Liu, J.

J. Liu, L. Wang, B. Sun, H. Li, and X. Zhai, “Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity,” Opt. Laser Technol. 69, 71–76 (2015).
[Crossref]

Liu, S.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Liu, Y.

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

Luo, X.

N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
[Crossref]

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15(18), 11321–11327 (2007).
[Crossref] [PubMed]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

Min, Q.

Müller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

Park, B.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, and K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[Crossref]

Park, J.-B.

Pellerin, K. M.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[Crossref]

Pu, M.

N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
[Crossref]

Qiu, M.

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Shi, H.

Song, E. Y.

Soukoulis, C. M.

W. Dai and C. M. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82(4), 045427 (2010).
[Crossref]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

Sun, B.

J. Liu, L. Wang, B. Sun, H. Li, and X. Zhai, “Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity,” Opt. Laser Technol. 69, 71–76 (2015).
[Crossref]

Sun, C.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Tan, Q.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritions with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).
[Crossref]

Thio, T.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tian, Q.

Veronis, G.

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Wang, C.

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

Wang, J.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[Crossref]

H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
[Crossref] [PubMed]

Wang, L.

J. Liu, L. Wang, B. Sun, H. Li, and X. Zhai, “Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity,” Opt. Laser Technol. 69, 71–76 (2015).
[Crossref]

Wang, R.

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[Crossref]

Wang, W.

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

Weiner, J.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xiao, J.

Xu, T.

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Yang, Y.

Yao, N.

N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
[Crossref]

Yao, W.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

You, J.-B.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, and K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[Crossref]

Yu, K.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, and K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[Crossref]

Yue, S.

Yun, H.

Zeng, B.

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

Zhai, X.

J. Liu, L. Wang, B. Sun, H. Li, and X. Zhai, “Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity,” Opt. Laser Technol. 69, 71–76 (2015).
[Crossref]

Zhang, X.

Zhang, X. J.

Y. Lee, K. Hoshino, A. Alù, and X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[Crossref]

Zhao, D.

Zhao, Y.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Zhao, Z.

N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007).
[Crossref]

Y. Lee, K. Hoshino, A. Alù, and X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012).
[Crossref]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77(11), 1569–1571 (2000).
[Crossref]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritions with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).
[Crossref]

J. Opt. (1)

F. Hao, R. Wang, and J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011).
[Crossref]

J. Opt. A (1)

T. Xu, L. Fang, B. Zeng, Y. Liu, C. Wang, Q. Feng, and X. Luo, “Subwavelength nanolithography based on unidirectional excitation of surface plasmons,” J. Opt. A 11(8), 085003 (2009).
[Crossref]

Nano Lett. (2)

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (9)

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, “Grating-assisted enhanced optical transmission through a seamless gold film,” Opt. Express 22(5), 5416–5421 (2014).
[Crossref] [PubMed]

K. Kim, S.-Y. Lee, H. Yun, J.-B. Park, and B. Lee, “Switchable beaming from a nanoslit with metallic gratings controlled by the phase difference between incident beams,” Opt. Express 22(5), 5465–5473 (2014).
[Crossref] [PubMed]

A. Haddadpour and G. Veronis, “Microcavity enhanced directional transmission through a subwavelength plasmonic slit,” Opt. Express 23(5), 5789–5799 (2015).
[Crossref] [PubMed]

H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15(18), 11321–11327 (2007).
[Crossref] [PubMed]

Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
[Crossref] [PubMed]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19(27), 26463–26469 (2011).
[Crossref] [PubMed]

Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[Crossref] [PubMed]

X. Zhang, Z. Li, J. Chen, S. Yue, and Q. Gong, “A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit,” Opt. Express 21(12), 14548–14554 (2013).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

J. Liu, L. Wang, B. Sun, H. Li, and X. Zhai, “Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity,” Opt. Laser Technol. 69, 71–76 (2015).
[Crossref]

Opt. Lett. (1)

Optik (Stuttg.) (1)

N. Yao, M. Pu, C. Hu, Z. Lai, Z. Zhao, and X. Luo, “Dynamical modulating the directional excitation of surface plasmons sources,” Optik (Stuttg.) 123(16), 1465–1468 (2012).
[Crossref]

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[Crossref]

Phys. Rev. B (2)

W. Dai and C. M. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82(4), 045427 (2010).
[Crossref]

W.-J. Lee, J.-B. You, K. Kwon, B. Park, and K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[Crossref]

Phys. Rev. Lett. (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92(11), 113903 (2004).
[Crossref] [PubMed]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009).
[Crossref]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic and geometry parameters of the proposed double-slit structure for direction-tunable beaming.
Fig. 2
Fig. 2 The simulated transmission distribution for three groups of incident light parameters. Group I, (a)-(d): λ = 750nm, φ = 0°; Group II, (e)-(h): λ = 850nm, φ = 90°; Group III, (i)-(l): λ = 850nm, φ = −90°. In each group of parameters, the upper panel shows the case of light propagation through pure dielectric double-slit structure where no SPP is excited while other structure parameters are same with those of metal double-slits. The lower panel shows the case of the metallic double-slit structure as shown in Fig. 1. The color maps show the near-field Hy distribution patterns. The black dash lines show the corresponding normalized angle dependent far-field intensity distribution.
Fig. 3
Fig. 3 The simulated transmission distributions for various phase differences φ with fixed wavelength. (a) λ = 700nm; (b) λ = 850nm.
Fig. 4
Fig. 4 The normalized angle dependent far-field divergence for different parameters of incident light.
Fig. 5
Fig. 5 The simulated transmission distributions with and without dielectric film with λ = 850nm, φ = 90°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε +( ε s ε 1+iωτ )+( σ iω ε 0 ),

Metrics