Abstract

We use the digital holographic interferometry (DHI) technique to display the early ignition process for a butane-air mixture flame. Because such an event occurs in a short time (few milliseconds), a fast CCD camera is used to study the event. As more detail is required for monitoring the temporal evolution of the process, less light coming from the combustion is captured by the CCD camera, resulting in a deficient and underexposed image. Therefore, the CCD's direct observation of the combustion process is limited (down to 1000 frames per second). To overcome this drawback, we propose the use of DHI along with a high power laser in order to supply enough light to increase the speed capture, thus improving the visualization of the phenomenon in the initial moments. An experimental optical setup based on DHI is used to obtain a large sequence of phase maps that allows us to observe two transitory stages in the ignition process: a first explosion which slightly emits visible light, and a second stage induced by variations in temperature when the flame is emerging. While the last stage can be directly monitored by the CCD camera, the first stage is hardly detected by direct observation, and DHI clearly evidences this process. Furthermore, our method can be easily adapted for visualizing other types of fast processes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry

Teli Xi, Jianglei Di, Ying Li, Siqing Dai, Chaojie Ma, and Jianlin Zhao
Opt. Express 26(22) 28497-28504 (2018)

Digital holographic interferometry for measurement of temperature in axisymmetric flames

Shobhna Sharma, Gyanendra Sheoran, and Chandra Shakher
Appl. Opt. 51(16) 3228-3235 (2012)

Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy

M. Lackner, S. Charareh, F. Winter, K. F. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner
Opt. Express 12(19) 4546-4557 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Lackner, S. Charareh, F. Winter, K. F. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, “Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy,” Opt. Express 12(19), 4546–4557 (2004).
    [Crossref] [PubMed]
  2. S. McAllister, J. Y. Chen, and A. C. Fernandez-Pello, Fundamentals of combustion processes (Springer, 2011).
    [Crossref]
  3. J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with mach-zehnder interferometry,” Appl. Therm. Eng. 28(14), 1806–1812 (2008).
    [Crossref]
  4. S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Laser Eng. 50(10), 1436–1444 (2012).
    [Crossref]
  5. R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
    [Crossref]
  6. J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
    [Crossref]
  7. M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Optics 48(10), 1869–1877 (2009).
    [Crossref]
  8. H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by ir emission computed tomography,” Appl. Optics 24(23), 4111–4116 (1985).
    [Crossref]
  9. J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energ. 83(12), 1307–1316 (2006).
    [Crossref]
  10. C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Laser Eng. 31(6), 455–491 (1999).
    [Crossref]
  11. A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29(1), 1–12 (2000).
    [Crossref]
  12. C. Shakher, “Interferometric methods to measure temperature and temperature profile of gaseous flames,” the International Conference on Optics and Photonics, Chandigarh-CSIO, India, 30 Oct.–1 Nov. 2009.
  13. D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Fl. 24(3), 345–355 (2003).
    [Crossref]
  14. W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Optics 50(21), 3924–3936 (2011).
    [Crossref]
  15. C. Shakher and A. J. P. Daniel, “Talbot interferometer with circular gratings for the measurement of temperature in axisymmetric gaseous flames,” Appl. Optics 33(25), 6068–6072 (1994).
    [Crossref]
  16. C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33(6), 1983–1988 (1994).
    [Crossref]
  17. M. Thakur, A. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Laser Eng. 36(4), 373–380 (2001).
    [Crossref]
  18. S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Optics 51(16), 3228–3235 (2012).
    [Crossref]
  19. S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
    [Crossref]
  20. J. M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Optics 54(1), A1–A8 (2015).
    [Crossref]
  21. R. Mattsson, “Combination of optical methods for studies in combustion and wave propagation,” http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A990469&dswid=-2519
  22. P. J. Bryanston-Cross and J. W. Gardner, “Holographic visualisation of a combustion flame,” Opt. Laser Eng. 9(2), 85–100 (1988).
    [Crossref]
  23. C. Shakher, S. Sharma, M. Kumar, and S. Agarwal, “Temperature measurement of diffusion and pre-mixed flames under the influence of magnetic field using digital holographic interferometry,” the Seventh International Workshop on Advanced Optical Imaging and Metrology, Nurtingen, Germany, 8–11 Sept. 2003.
  24. R. Mattsson, P. Gren, and A. O. Wahlin, “Laser ignition of premixed gases studied by pulsed TV holography,” Proc. SPIE 4933, 285 (2003).
    [Crossref]
  25. T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Laser Eng. 44(6), 535–554 (2006).
    [Crossref]
  26. R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
    [Crossref]
  27. M. Strojnik, G. Paez, and M. Scholl, “Combustion initiation and evolution during the first 400 ms in a gas burner at 10 µ m,” Infrared Phys. Techn. 61, 42–49 (2013).
    [Crossref]
  28. Z. Chen and Y. Ju, “Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame,” Combust. Theor. Model. 11(3), 427–453 (2007).
    [Crossref]
  29. T. Aoyama, Y. Hattori, J. I. Mizuta, and Y. Sato, “An experimental study on pre- mixed-charge compression ignition gasoline engine,” http://papers.sae.org/960081/
  30. S. Saravanan, K. Pitchandi, and G. Suresh, “An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol,” Alex. Eng. J. 54(4), 897–904 (2015).
    [Crossref]
  31. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  32. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  33. C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107(4), 418–452 (1996).
    [Crossref]

2015 (3)

J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
[Crossref]

J. M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Optics 54(1), A1–A8 (2015).
[Crossref]

S. Saravanan, K. Pitchandi, and G. Suresh, “An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol,” Alex. Eng. J. 54(4), 897–904 (2015).
[Crossref]

2013 (2)

M. Strojnik, G. Paez, and M. Scholl, “Combustion initiation and evolution during the first 400 ms in a gas burner at 10 µ m,” Infrared Phys. Techn. 61, 42–49 (2013).
[Crossref]

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
[Crossref]

2012 (2)

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Laser Eng. 50(10), 1436–1444 (2012).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Optics 51(16), 3228–3235 (2012).
[Crossref]

2011 (1)

W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Optics 50(21), 3924–3936 (2011).
[Crossref]

2009 (2)

M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Optics 48(10), 1869–1877 (2009).
[Crossref]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (1)

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with mach-zehnder interferometry,” Appl. Therm. Eng. 28(14), 1806–1812 (2008).
[Crossref]

2007 (1)

Z. Chen and Y. Ju, “Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame,” Combust. Theor. Model. 11(3), 427–453 (2007).
[Crossref]

2006 (2)

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Laser Eng. 44(6), 535–554 (2006).
[Crossref]

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energ. 83(12), 1307–1316 (2006).
[Crossref]

2004 (2)

M. Lackner, S. Charareh, F. Winter, K. F. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, “Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy,” Opt. Express 12(19), 4546–4557 (2004).
[Crossref] [PubMed]

R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
[Crossref]

2003 (2)

R. Mattsson, P. Gren, and A. O. Wahlin, “Laser ignition of premixed gases studied by pulsed TV holography,” Proc. SPIE 4933, 285 (2003).
[Crossref]

D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Fl. 24(3), 345–355 (2003).
[Crossref]

2001 (1)

M. Thakur, A. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Laser Eng. 36(4), 373–380 (2001).
[Crossref]

2000 (1)

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29(1), 1–12 (2000).
[Crossref]

1999 (1)

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Laser Eng. 31(6), 455–491 (1999).
[Crossref]

1996 (1)

C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107(4), 418–452 (1996).
[Crossref]

1994 (2)

C. Shakher and A. J. P. Daniel, “Talbot interferometer with circular gratings for the measurement of temperature in axisymmetric gaseous flames,” Appl. Optics 33(25), 6068–6072 (1994).
[Crossref]

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33(6), 1983–1988 (1994).
[Crossref]

1988 (1)

P. J. Bryanston-Cross and J. W. Gardner, “Holographic visualisation of a combustion flame,” Opt. Laser Eng. 9(2), 85–100 (1988).
[Crossref]

1985 (1)

H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by ir emission computed tomography,” Appl. Optics 24(23), 4111–4116 (1985).
[Crossref]

1982 (1)

1979 (1)

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Agarwal, S.

C. Shakher, S. Sharma, M. Kumar, and S. Agarwal, “Temperature measurement of diffusion and pre-mixed flames under the influence of magnetic field using digital holographic interferometry,” the Seventh International Workshop on Advanced Optical Imaging and Metrology, Nurtingen, Germany, 8–11 Sept. 2003.

Bryanston-Cross, P. J.

P. J. Bryanston-Cross and J. W. Gardner, “Holographic visualisation of a combustion flame,” Opt. Laser Eng. 9(2), 85–100 (1988).
[Crossref]

Carlsson, T. E.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Laser Eng. 44(6), 535–554 (2006).
[Crossref]

R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
[Crossref]

Charareh, S.

Chen, J. Y.

S. McAllister, J. Y. Chen, and A. C. Fernandez-Pello, Fundamentals of combustion processes (Springer, 2011).
[Crossref]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chen, Z.

Z. Chen and Y. Ju, “Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame,” Combust. Theor. Model. 11(3), 427–453 (2007).
[Crossref]

Cheng, C.

J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
[Crossref]

Cheng, X.

J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
[Crossref]

Dai, J.

J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
[Crossref]

Daniel, A. J. P.

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33(6), 1983–1988 (1994).
[Crossref]

C. Shakher and A. J. P. Daniel, “Talbot interferometer with circular gratings for the measurement of temperature in axisymmetric gaseous flames,” Appl. Optics 33(25), 6068–6072 (1994).
[Crossref]

Desse, J. M.

J. M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Optics 54(1), A1–A8 (2015).
[Crossref]

Dolecek, R.

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
[Crossref]

Elfsberg, M.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Laser Eng. 44(6), 535–554 (2006).
[Crossref]

Fernandez-Pello, A. C.

S. McAllister, J. Y. Chen, and A. C. Fernandez-Pello, Fundamentals of combustion processes (Springer, 2011).
[Crossref]

Fureby, C.

R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
[Crossref]

Gardner, J. W.

P. J. Bryanston-Cross and J. W. Gardner, “Holographic visualisation of a combustion flame,” Opt. Laser Eng. 9(2), 85–100 (1988).
[Crossref]

Giammartini, S.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29(1), 1–12 (2000).
[Crossref]

Gren, P.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Laser Eng. 44(6), 535–554 (2006).
[Crossref]

R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
[Crossref]

R. Mattsson, P. Gren, and A. O. Wahlin, “Laser ignition of premixed gases studied by pulsed TV holography,” Proc. SPIE 4933, 285 (2003).
[Crossref]

Guj, G.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29(1), 1–12 (2000).
[Crossref]

Hossain, M. M.

M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Optics 48(10), 1869–1877 (2009).
[Crossref]

Ina, H.

Iskra, K. F.

Jo, S. H.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Ju, Y.

Z. Chen and Y. Ju, “Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame,” Combust. Theor. Model. 11(3), 427–453 (2007).
[Crossref]

Kim, Y. K.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Kobayashi, S.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
[Crossref]

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Kopecek, H.

Kopecký, V.

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
[Crossref]

Kumar, M.

C. Shakher, S. Sharma, M. Kumar, and S. Agarwal, “Temperature measurement of diffusion and pre-mixed flames under the influence of magnetic field using digital holographic interferometry,” the Seventh International Workshop on Advanced Optical Imaging and Metrology, Nurtingen, Germany, 8–11 Sept. 2003.

Kupiainen, M.

R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
[Crossref]

Lackner, M.

Lédl, V.

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
[Crossref]

Leung, C. W.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with mach-zehnder interferometry,” Appl. Therm. Eng. 28(14), 1806–1812 (2008).
[Crossref]

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energ. 83(12), 1307–1316 (2006).
[Crossref]

Li, Y.

J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
[Crossref]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Lv, W.

W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Optics 50(21), 3924–3936 (2011).
[Crossref]

Mattsson, R.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Laser Eng. 44(6), 535–554 (2006).
[Crossref]

R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
[Crossref]

R. Mattsson, P. Gren, and A. O. Wahlin, “Laser ignition of premixed gases studied by pulsed TV holography,” Proc. SPIE 4933, 285 (2003).
[Crossref]

McAllister, S.

S. McAllister, J. Y. Chen, and A. C. Fernandez-Pello, Fundamentals of combustion processes (Springer, 2011).
[Crossref]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Nakajima, M.

H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by ir emission computed tomography,” Appl. Optics 24(23), 4111–4116 (1985).
[Crossref]

Naylor, D.

D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Fl. 24(3), 345–355 (2003).
[Crossref]

Neger, T.

Nirala, A. K.

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Laser Eng. 31(6), 455–491 (1999).
[Crossref]

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33(6), 1983–1988 (1994).
[Crossref]

Paez, G.

M. Strojnik, G. Paez, and M. Scholl, “Combustion initiation and evolution during the first 400 ms in a gas burner at 10 µ m,” Infrared Phys. Techn. 61, 42–49 (2013).
[Crossref]

Picart, P.

J. M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Optics 54(1), A1–A8 (2015).
[Crossref]

Pitchandi, K.

S. Saravanan, K. Pitchandi, and G. Suresh, “An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol,” Alex. Eng. J. 54(4), 897–904 (2015).
[Crossref]

Probert, S. D.

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energ. 83(12), 1307–1316 (2006).
[Crossref]

Psota, P.

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
[Crossref]

Qi, J. A.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with mach-zehnder interferometry,” Appl. Therm. Eng. 28(14), 1806–1812 (2008).
[Crossref]

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energ. 83(12), 1307–1316 (2006).
[Crossref]

Rüdisser, D.

Saravanan, S.

S. Saravanan, K. Pitchandi, and G. Suresh, “An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol,” Alex. Eng. J. 54(4), 897–904 (2015).
[Crossref]

Scholl, M.

M. Strojnik, G. Paez, and M. Scholl, “Combustion initiation and evolution during the first 400 ms in a gas burner at 10 µ m,” Infrared Phys. Techn. 61, 42–49 (2013).
[Crossref]

Shaddix, C. R.

C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107(4), 418–452 (1996).
[Crossref]

Shakher, C.

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Optics 51(16), 3228–3235 (2012).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Laser Eng. 50(10), 1436–1444 (2012).
[Crossref]

M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Optics 48(10), 1869–1877 (2009).
[Crossref]

M. Thakur, A. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Laser Eng. 36(4), 373–380 (2001).
[Crossref]

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Laser Eng. 31(6), 455–491 (1999).
[Crossref]

C. Shakher and A. J. P. Daniel, “Talbot interferometer with circular gratings for the measurement of temperature in axisymmetric gaseous flames,” Appl. Optics 33(25), 6068–6072 (1994).
[Crossref]

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33(6), 1983–1988 (1994).
[Crossref]

C. Shakher, S. Sharma, M. Kumar, and S. Agarwal, “Temperature measurement of diffusion and pre-mixed flames under the influence of magnetic field using digital holographic interferometry,” the Seventh International Workshop on Advanced Optical Imaging and Metrology, Nurtingen, Germany, 8–11 Sept. 2003.

C. Shakher, “Interferometric methods to measure temperature and temperature profile of gaseous flames,” the International Conference on Optics and Photonics, Chandigarh-CSIO, India, 30 Oct.–1 Nov. 2009.

Sharma, S.

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Laser Eng. 50(10), 1436–1444 (2012).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Optics 51(16), 3228–3235 (2012).
[Crossref]

C. Shakher, S. Sharma, M. Kumar, and S. Agarwal, “Temperature measurement of diffusion and pre-mixed flames under the influence of magnetic field using digital holographic interferometry,” the Seventh International Workshop on Advanced Optical Imaging and Metrology, Nurtingen, Germany, 8–11 Sept. 2003.

Sheoran, G.

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Optics 51(16), 3228–3235 (2012).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Laser Eng. 50(10), 1436–1444 (2012).
[Crossref]

Smyth, K. C.

C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107(4), 418–452 (1996).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Stella, A.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29(1), 1–12 (2000).
[Crossref]

Strojnik, M.

M. Strojnik, G. Paez, and M. Scholl, “Combustion initiation and evolution during the first 400 ms in a gas burner at 10 µ m,” Infrared Phys. Techn. 61, 42–49 (2013).
[Crossref]

Suresh, G.

S. Saravanan, K. Pitchandi, and G. Suresh, “An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol,” Alex. Eng. J. 54(4), 897–904 (2015).
[Crossref]

Takeda, M.

Takishita, T.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Tegner, J.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Laser Eng. 44(6), 535–554 (2006).
[Crossref]

Tenjinbayashi, K.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Thakur, M.

M. Thakur, A. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Laser Eng. 36(4), 373–380 (2001).
[Crossref]

Tochiori, H.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Uchiyama, H.

H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by ir emission computed tomography,” Appl. Optics 24(23), 4111–4116 (1985).
[Crossref]

Uyemura, T.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Václavík, J.

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
[Crossref]

Vít, T.

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
[Crossref]

Vyas, A.

M. Thakur, A. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Laser Eng. 36(4), 373–380 (2001).
[Crossref]

Wahlin, A.

R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
[Crossref]

Wahlin, A. O.

R. Mattsson, P. Gren, and A. O. Wahlin, “Laser ignition of premixed gases studied by pulsed TV holography,” Proc. SPIE 4933, 285 (2003).
[Crossref]

Winter, F.

Wintner, E.

Wong, W. O.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with mach-zehnder interferometry,” Appl. Therm. Eng. 28(14), 1806–1812 (2008).
[Crossref]

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energ. 83(12), 1307–1316 (2006).
[Crossref]

Yamamoto, Y.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Yokoyama, N.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Yoshida, M.

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Yuen, D. W.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with mach-zehnder interferometry,” Appl. Therm. Eng. 28(14), 1806–1812 (2008).
[Crossref]

Yuta, S.

H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by ir emission computed tomography,” Appl. Optics 24(23), 4111–4116 (1985).
[Crossref]

Zhang, J.

J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
[Crossref]

Zhou, H. C.

W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Optics 50(21), 3924–3936 (2011).
[Crossref]

Zhu, J.

J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
[Crossref]

Zhu, J. R.

W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Optics 50(21), 3924–3936 (2011).
[Crossref]

Alex. Eng. J. (1)

S. Saravanan, K. Pitchandi, and G. Suresh, “An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol,” Alex. Eng. J. 54(4), 897–904 (2015).
[Crossref]

Appl. Energ. (1)

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energ. 83(12), 1307–1316 (2006).
[Crossref]

Appl. Optics (7)

M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Optics 48(10), 1869–1877 (2009).
[Crossref]

H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by ir emission computed tomography,” Appl. Optics 24(23), 4111–4116 (1985).
[Crossref]

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Optics 52(1), A319–A325 (2013).
[Crossref]

W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Optics 50(21), 3924–3936 (2011).
[Crossref]

C. Shakher and A. J. P. Daniel, “Talbot interferometer with circular gratings for the measurement of temperature in axisymmetric gaseous flames,” Appl. Optics 33(25), 6068–6072 (1994).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Optics 51(16), 3228–3235 (2012).
[Crossref]

J. M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Optics 54(1), A1–A8 (2015).
[Crossref]

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Appl. Therm. Eng. (1)

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with mach-zehnder interferometry,” Appl. Therm. Eng. 28(14), 1806–1812 (2008).
[Crossref]

Combust. Flame (2)

C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107(4), 418–452 (1996).
[Crossref]

R. Mattsson, M. Kupiainen, P. Gren, A. Wahlin, T. E. Carlsson, and C. Fureby, “Pulsed TV holography and schlieren studies and large eddy simulations of a turbulent jet diffusion flame,” Combust. Flame 139(1), 1–15 (2004).
[Crossref]

Combust. Theor. Model. (1)

Z. Chen and Y. Ju, “Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame,” Combust. Theor. Model. 11(3), 427–453 (2007).
[Crossref]

Exp. Fluids (1)

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29(1), 1–12 (2000).
[Crossref]

Infrared Phys. Techn. (1)

M. Strojnik, G. Paez, and M. Scholl, “Combustion initiation and evolution during the first 400 ms in a gas burner at 10 µ m,” Infrared Phys. Techn. 61, 42–49 (2013).
[Crossref]

Int. J. Heat Fluid Fl. (1)

D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Fl. 24(3), 345–355 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Eng. (2)

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33(6), 1983–1988 (1994).
[Crossref]

J. Zhu, J. Dai, X. Cheng, C. Cheng, J. Zhang, and Y. Li, “Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount,” Opt. Eng. 54(3), 034109 (2015).
[Crossref]

Opt. Express (1)

Opt. Laser Eng. (5)

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Laser Eng. 50(10), 1436–1444 (2012).
[Crossref]

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Laser Eng. 31(6), 455–491 (1999).
[Crossref]

M. Thakur, A. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Laser Eng. 36(4), 373–380 (2001).
[Crossref]

P. J. Bryanston-Cross and J. W. Gardner, “Holographic visualisation of a combustion flame,” Opt. Laser Eng. 9(2), 85–100 (1988).
[Crossref]

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Laser Eng. 44(6), 535–554 (2006).
[Crossref]

Proc. SPIE (2)

R. Mattsson, P. Gren, and A. O. Wahlin, “Laser ignition of premixed gases studied by pulsed TV holography,” Proc. SPIE 4933, 285 (2003).
[Crossref]

S. Kobayashi, T. Takishita, Y. K. Kim, S. H. Jo, M. Yoshida, T. Uyemura, Y. Yamamoto, K. Tenjinbayashi, N. Yokoyama, and H. Tochiori, “Application of holographic interferometry to combustion analysis in a spark-ignition engine,” Proc. SPIE 0189, 663–666 (1979).
[Crossref]

Other (5)

R. Mattsson, “Combination of optical methods for studies in combustion and wave propagation,” http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A990469&dswid=-2519

C. Shakher, S. Sharma, M. Kumar, and S. Agarwal, “Temperature measurement of diffusion and pre-mixed flames under the influence of magnetic field using digital holographic interferometry,” the Seventh International Workshop on Advanced Optical Imaging and Metrology, Nurtingen, Germany, 8–11 Sept. 2003.

T. Aoyama, Y. Hattori, J. I. Mizuta, and Y. Sato, “An experimental study on pre- mixed-charge compression ignition gasoline engine,” http://papers.sae.org/960081/

S. McAllister, J. Y. Chen, and A. C. Fernandez-Pello, Fundamentals of combustion processes (Springer, 2011).
[Crossref]

C. Shakher, “Interferometric methods to measure temperature and temperature profile of gaseous flames,” the International Conference on Optics and Photonics, Chandigarh-CSIO, India, 30 Oct.–1 Nov. 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the optical setup used to monitor the ignition process by DHI. BS1 and BS2 are plane 50:50 beam splitters, MO1 and MO2 are 10× microscope objectives, F1 is an optical fiber, M is a mirror, P is a pinhole to clean the beam (spatial filter), L1 and L2 are positive lenses, and CCD is a charge-coupled device.
Fig. 2
Fig. 2 Sequence of direct images captured with the CCD camera of the ignition process. Some representative selected frames are shown and labeled with the time elapsed since the electric arc appears. Speed of capture is 1000 fps.
Fig. 3
Fig. 3 Normalized ( t ) as a function of time for the ignition process obtained from the captured images of Fig. 2. Red dots (green diamonds) correspond to those significative images displayed in the first (second) row of Fig. 2.
Fig. 4
Fig. 4 Sequence of relative unwrapped phase recorded with the experimental setup for DHI of the ignition process. Some representative selected frames are shown and labeled with the time elapsed since the electric arc appears. The images where recorded with the CCD camera at 3000 fps speed capture and process by performing the Fourier-transform method.
Fig. 5
Fig. 5 Normalized ΔΦ(t) as a function of time for the unwrapped phase derivative images of Fig. 4. Red (green/yellow/purple) dots correspond to those significative images displayed in the first (second/third/fourth) row of Fig. 4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( t n ) = i , j I i , j ( t n ) ,
Δ Φ ( t n ) = i , j | Δ ϕ i , j Δ t | t = t n ,

Metrics