Abstract

A tunable, all-optical, coupling method is realised for a high-Q silica microsphere and an optical waveguide. By means of a novel optical nanopositioning method, induced thermal expansion of an asymmetric microsphere stem for laser powers up to 211 mW is observed and used to fine tune the microsphere-waveguide coupling. Microcavity displacements ranging from (0.61 ± 0.13) – (3.49 ± 0.13) μm and nanometer scale sensitivities varying from (2.81 ± 0.08) – (17.08 ± 0.76) nm/mW, with an apparent linear dependency of coupling distance on stem laser heating, are obtained. Using this method, the coupling is altered such that the different coupling regimes are achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

31 May 2017: Typographical corrections were made to paragraph 1 of Section 2, paragraph 1 of Section 3, paragraphs 2–4 of Section 4, and the figure caption of Fig. 4.


OSA Recommended Articles
Observation of high-Q optomechanical modes in the mounted silica microspheres

Zhen Shen, Zhong-Hao Zhou, Chang-Ling Zou, Fang-Wen Sun, Guo-Ping Guo, Chun-Hua Dong, and Guang-Can Guo
Photon. Res. 3(5) 243-247 (2015)

Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors

Xudong Fan, Phedon Palinginis, Scott Lacey, Hailin Wang, and Mark C. Lonergan
Opt. Lett. 25(21) 1600-1602 (2000)

Packaged microsphere-taper coupling system with a high Q factor

Yongchao Dong, Keyi Wang, and Xueying Jin
Appl. Opt. 54(2) 277-284 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
    [Crossref]
  2. G. C. Righini and S. Soria, “Biosensing by WGM microspherical resonators,” Sensors (Switzerland) 16, 1–25 (2016).
    [Crossref]
  3. J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top 223, 1917–1935 (2014).
    [Crossref]
  4. Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24, 294–299 (2016).
    [Crossref] [PubMed]
  5. A. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009), 1st ed.
    [Crossref]
  6. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
    [Crossref] [PubMed]
  7. Y. Yang, F. Lei, S. Kasumie, L. Xu, J. M. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
    [Crossref] [PubMed]
  8. J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6, 25152 (2016).
    [Crossref] [PubMed]
  9. F.-C. Lei, M. Gao, C. Du, Q.-L. Jing, and G.-L. Long, “Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system,” Opt. Express 23, 11508–11517 (2015).
    [Crossref] [PubMed]
  10. Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. Nic Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2016).
    [Crossref] [PubMed]
  11. Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
    [Crossref] [PubMed]
  12. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35, 898–900 (2010).
    [Crossref] [PubMed]
  13. K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R. Norwood, “Fabrication of high-Q microresonators using femtosecond laser micromachining,” IEEE Photon. Techn. Lett. 25, 430–433 (2013).
    [Crossref]
  14. S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nature Comm. 7, 10435 (2016).
    [Crossref]
  15. X.-F. Liu, F. Lei, M. Gao, X. Yang, G.-Q. Qin, and G.-L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41, 3603–3606 (2016).
    [Crossref] [PubMed]
  16. X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24, 25905–25910 (2016).
    [Crossref] [PubMed]
  17. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  18. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [Crossref] [PubMed]
  19. J.P. Laine, C. Tapalian, B. Little, and H.A. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors and Actuators A 93, 1–7. (2001).
    [Crossref]
  20. X. Yang, S.K. Özdemir, B. Peng, H. Yilmaz, F.-C. Lei, G.-L. Long, and L. Yang, “Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities,” Opt. Express 23, 29573–29583 (2015).
    [Crossref] [PubMed]
  21. C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
    [Crossref]
  22. S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev. 7, 444–452 (2013).
    [Crossref]
  23. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973).
    [Crossref] [PubMed]

2017 (4)

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
[Crossref]

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. M. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
[Crossref] [PubMed]

2016 (7)

2015 (2)

2014 (1)

J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top 223, 1917–1935 (2014).
[Crossref]

2013 (2)

K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R. Norwood, “Fabrication of high-Q microresonators using femtosecond laser micromachining,” IEEE Photon. Techn. Lett. 25, 430–433 (2013).
[Crossref]

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev. 7, 444–452 (2013).
[Crossref]

2010 (1)

2006 (1)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

2001 (1)

J.P. Laine, C. Tapalian, B. Little, and H.A. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors and Actuators A 93, 1–7. (2001).
[Crossref]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

1997 (1)

1973 (1)

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Birks, T. A.

Bloembergen, N.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Cao, Q.-T.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Carmon, T.

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nature Comm. 7, 10435 (2016).
[Crossref]

Chen, X.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Chen, Y.

C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
[Crossref]

Cheung, G.

Cohoon, G.

K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R. Norwood, “Fabrication of high-Q microresonators using femtosecond laser micromachining,” IEEE Photon. Techn. Lett. 25, 430–433 (2013).
[Crossref]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Demos, S. G.

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev. 7, 444–452 (2013).
[Crossref]

Dhasmana, N.

J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top 223, 1917–1935 (2014).
[Crossref]

Dong, C.-H.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Du, C.

Dulashko, Y.

Feit, M. D.

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev. 7, 444–452 (2013).
[Crossref]

Gao, M.

Ge, L.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Gong, Q.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Haus, H.A.

J.P. Laine, C. Tapalian, B. Little, and H.A. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors and Actuators A 93, 1–7. (2001).
[Crossref]

Hua, Q.

C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
[Crossref]

Hua, S.

C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
[Crossref]

Jacques, F.

Jiang, X.

Jing, H.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Jing, Q.-L.

Kasumie, S.

Kieu, K.

K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R. Norwood, “Fabrication of high-Q microresonators using femtosecond laser micromachining,” IEEE Photon. Techn. Lett. 25, 430–433 (2013).
[Crossref]

Kimble, H.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kippenberg, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Knight, J. C.

Laine, J.P.

J.P. Laine, C. Tapalian, B. Little, and H.A. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors and Actuators A 93, 1–7. (2001).
[Crossref]

Lei, F.

Lei, F.-C.

Little, B.

J.P. Laine, C. Tapalian, B. Little, and H.A. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors and Actuators A 93, 1–7. (2001).
[Crossref]

Liu, R.-S.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Liu, X.-F.

Long, G.-L.

Ma, J.

C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
[Crossref]

Maayani, S.

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nature Comm. 7, 10435 (2016).
[Crossref]

Mansuripur, M.

K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R. Norwood, “Fabrication of high-Q microresonators using femtosecond laser micromachining,” IEEE Photon. Techn. Lett. 25, 430–433 (2013).
[Crossref]

Martin, L. L.

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nature Comm. 7, 10435 (2016).
[Crossref]

Matsko, A.

A. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009), 1st ed.
[Crossref]

Negres, R. A.

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev. 7, 444–452 (2013).
[Crossref]

Nic Chormaic, S.

Norwood, R.

K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R. Norwood, “Fabrication of high-Q microresonators using femtosecond laser micromachining,” IEEE Photon. Techn. Lett. 25, 430–433 (2013).
[Crossref]

Özdemir, S.K.

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Peng, B.

Qin, G.-Q.

Raman, R. N.

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev. 7, 444–452 (2013).
[Crossref]

Righini, G. C.

G. C. Righini and S. Soria, “Biosensing by WGM microspherical resonators,” Sensors (Switzerland) 16, 1–25 (2016).
[Crossref]

Rubenchik, A. M.

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev. 7, 444–452 (2013).
[Crossref]

Saurabh, S.

Soria, S.

G. C. Righini and S. Soria, “Biosensing by WGM microspherical resonators,” Sensors (Switzerland) 16, 1–25 (2016).
[Crossref]

Sumetsky, M.

Tada, K.

K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R. Norwood, “Fabrication of high-Q microresonators using femtosecond laser micromachining,” IEEE Photon. Techn. Lett. 25, 430–433 (2013).
[Crossref]

Tapalian, C.

J.P. Laine, C. Tapalian, B. Little, and H.A. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors and Actuators A 93, 1–7. (2001).
[Crossref]

Vahala, K.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Wang, H.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Ward, J. M.

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Windeler, R. S.

Xiao, M.

C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
[Crossref]

Xiao, Y.-F.

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Xu, L.

Xu, X.

Yang, C.

C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
[Crossref]

Yang, L.

Yang, X.

Yang, Y.

Yilmaz, H.

Yu, X.-C.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Zhao, G.

Zhi, Y.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Adv. Mater. (1)

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Appl. Opt. (1)

Eur. Phys. J. Spec. Top (1)

J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top 223, 1917–1935 (2014).
[Crossref]

IEEE Photon. Techn. Lett. (1)

K. Tada, G. Cohoon, K. Kieu, M. Mansuripur, and R. Norwood, “Fabrication of high-Q microresonators using femtosecond laser micromachining,” IEEE Photon. Techn. Lett. 25, 430–433 (2013).
[Crossref]

Laser Photon. Rev. (2)

C. Yang, X. Jiang, Q. Hua, S. Hua, Y. Chen, J. Ma, and M. Xiao, “Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities,” Laser Photon. Rev. 11, 1600178 (2017).
[Crossref]

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev. 7, 444–452 (2013).
[Crossref]

Nature (1)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic micexternalroresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Nature Comm. (1)

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nature Comm. 7, 10435 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

J. M. Ward, Y. Yang, and S. Nic Chormaic, “Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

Sensors (Switzerland) (1)

G. C. Righini and S. Soria, “Biosensing by WGM microspherical resonators,” Sensors (Switzerland) 16, 1–25 (2016).
[Crossref]

Sensors and Actuators A (1)

J.P. Laine, C. Tapalian, B. Little, and H.A. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors and Actuators A 93, 1–7. (2001).
[Crossref]

Other (1)

A. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009), 1st ed.
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (3974 KB)      A video of the asymmetric stem fabrication process. Please see section 2, figure 1.
» Visualization 2: AVI (5743 KB)      The transmission spectra at different 980 nm power

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Asymmetric stem fabrication. (a) – (c): The initial state of the optical fiber and the initial asymmetry resulting from side heating with a sub-fiber diameter CO2 laser spot size and ~ 12% power. (d)–(e):Final asymmetric-stem microsphere sample after fabrication, highlighting the 980 nm laser scattering region. A video of the fabrication process is available (see Visualization 1).

Fig. 2
Fig. 2

(a) Schematic diagram of the experimental set-up used to characterize the tunable thermo-mechanical coupling. DSO: Digital Storage Oscilloscope; PD: Photodiode; FG: Function generator. (b) Deformation of the fiber during fabrication redirects the incident laser light towards the asymmetric stem. The local surface conditions of the asymmetric stem region, once exposed to the external 980 nm laser source, exhibit localized heating and thermal expansion of the silica (red: an example of a scattering/heating region), leading to an increase (or decrease) in the coupling distance, Δd. For the sake of clarity, Δd here is the distance between the microsphere and the tapered fiber.

Fig. 3
Fig. 3

Graph of coupling distance, Δd, against laser power for four samples A, B, C and D. The results indicate a linear increase in coupling distance with increasing laser power for these microsphere orientations, consistent with the thermal expansion hypothesis when the orientation and scattering regions are taken into consideration. Displacement sensitivities of (2.81 ± 0.08), (4.42 ± 0.12), (7.39 ± 0.17) and (17.08 0.76) nm/mW and a total Δd of (0.61 ± 0.13), (1.04 ± 0.13), (1.58 ± 0.13), and (3.49 ± ± 0.13)) μm are observed. Errors include the minimum resolution of the piezo stage of 36 nm as well as maximum observed fluctuation of the coupling depth for a given mode.

Fig. 4
Fig. 4

(a) On-resonance transmission as a function of the 980 nm laser power for sample D. The Q-factor of the microsphere sample is ~108. (b) Change in coupling versus time when the 980 nm laser is switched on and off between 0 and 175 mW.

Metrics