Abstract

The study of near field thermal radiation is gaining renewed interest thanks in part to their great potential in energy harvesting applications. It is well known that plasmonic or polaritonic materials exhibit strongly enhanced fields near the surface, but it is not trivial to quantitatively predict their impact on thermal radiation intensity in the near field. In this paper, we present a case study for a metamaterial that supports a surface plasmon mode in the terahertz region and consequently exhibits strongly enhanced near field thermal radiation at the plasmon resonance frequency. We implemented a finite-difference time-domain method that thermally excites the metamaterial with randomly fluctuating dipoles according to the fluctuation-dissipation theorem. The calculated thermal radiation from the metamaterial was then compared with the case of optical excitation by the plane wave incident on the metamaterial surface. The optical excitation couples only to the mode that satisfies the momentum matching condition while thermal excitation is not bound by it. As a result, the near field thermal radiation exhibits substantial differences compared to the optically excited surface plasmon modes. Under thermal excitation, the near field intensity at 1 µm away from metal surface of the metamaterial reaches a maximum enhancement of 43 fold over the far field at the frequency of the Brillouin zone boundary mode while the near field intensity under optical excitation reaches a maximum enhancement of 24 fold at the frequency of the Brillouin zone center mode. In addition, the peak near field intensity under thermal excitation shows a 4-fold enhancement over blackbody radiation with linear polarization radiation in the far field. The ability to precisely predict the local field intensity under thermal excitation is critical to the development of advanced energy devices that take advantage of this near field enhancement and could lead to the development of new generation of novel energy technology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics

Sean Molesky, Christopher J. Dewalt, and Zubin Jacob
Opt. Express 21(S1) A96-A110 (2013)

Near-field thermal radiation transfer by mesoporous metamaterials

Azadeh Didari and M. Pinar Mengüç
Opt. Express 23(19) A1253-A1258 (2015)

Thermally excited near-field radiation and far-field interference

Yusuke Kajihara, Keishi Kosaka, and Susumu Komiyama
Opt. Express 19(8) 7695-7704 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  2. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
    [Crossref]
  3. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(10), A366–A384 (2012).
    [Crossref] [PubMed]
  4. L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
    [Crossref]
  5. M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
    [Crossref]
  6. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  7. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
    [Crossref] [PubMed]
  8. Z.-W. Liu, Q.-H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [Crossref] [PubMed]
  9. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
    [Crossref] [PubMed]
  10. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).
  11. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
    [Crossref] [PubMed]
  12. D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036615 (2006).
    [Crossref] [PubMed]
  13. A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating-surface-current formulation of radiative heat transfer: theory and applications,” Phys. Rev. B 88(5), 054305 (2013).
    [Crossref]
  14. G. Moddel and S. Grover, Rectenna Solar Cells (Springer, 2013).
  15. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(3), 634–643 (1987).
    [Crossref]
  16. S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
    [Crossref]
  17. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  18. D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
    [Crossref] [PubMed]
  19. C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometrics: a brief overview,” J. Quant. Spectrosc. Radiat. Transf. 132(C), 3–11 (2014).
    [Crossref]
  20. S. M. Rytov, Y. A. Kravsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Elements of Random Fields (Springer Verlag, 1989).
  21. A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
    [Crossref]
  22. K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
    [Crossref]
  23. M. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
    [Crossref]

2014 (2)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometrics: a brief overview,” J. Quant. Spectrosc. Radiat. Transf. 132(C), 3–11 (2014).
[Crossref]

2013 (1)

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating-surface-current formulation of radiative heat transfer: theory and applications,” Phys. Rev. B 88(5), 054305 (2013).
[Crossref]

2012 (1)

2009 (2)

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

M. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

2008 (1)

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

2006 (4)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[Crossref] [PubMed]

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036615 (2006).
[Crossref] [PubMed]

2005 (1)

Z.-W. Liu, Q.-H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

2004 (2)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[Crossref]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

1999 (2)

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[Crossref]

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

1987 (1)

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(3), 634–643 (1987).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Arnold, M. D.

M. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Arscott, S.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Blaber, M.

M. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Carminati, R.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Celanovic, I.

Chan, D. L.

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[Crossref] [PubMed]

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036615 (2006).
[Crossref] [PubMed]

Chen, G.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Chen, X.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Chen, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Coutaz, J.-L.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

De Wilde, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Duvillaret, L.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Fan, S.

C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometrics: a brief overview,” J. Quant. Spectrosc. Radiat. Transf. 132(C), 3–11 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Ford, M. J.

M. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Formanek, F.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Garet, F.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Gralak, B.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Greffet, J.-J.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Herminghaus, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[Crossref]

Hu, L.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Ilic, O.

Jablan, M.

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Joannopoulos, J. D.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(10), A366–A384 (2012).
[Crossref] [PubMed]

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036615 (2006).
[Crossref] [PubMed]

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Johnson, S. G.

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating-surface-current formulation of radiative heat transfer: theory and applications,” Phys. Rev. B 88(5), 054305 (2013).
[Crossref]

Joulain, K.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Knoll, W.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[Crossref]

Kreiter, M.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[Crossref]

Lemoine, P.-A.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Lippens, D.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Liu, Z.-W.

Z.-W. Liu, Q.-H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mittler-Neher, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[Crossref]

Mounaix, P.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Mulet, J.-P.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Oster, J.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[Crossref]

Otey, C. R.

C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometrics: a brief overview,” J. Quant. Spectrosc. Radiat. Transf. 132(C), 3–11 (2014).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Reid, M. T. H.

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating-surface-current formulation of radiative heat transfer: theory and applications,” Phys. Rev. B 88(5), 054305 (2013).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Rodriguez, A. W.

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating-surface-current formulation of radiative heat transfer: theory and applications,” Phys. Rev. B 88(5), 054305 (2013).
[Crossref]

Sambles, R.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[Crossref]

Sandhu, S.

C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometrics: a brief overview,” J. Quant. Spectrosc. Radiat. Transf. 132(C), 3–11 (2014).
[Crossref]

Schatz, G. C.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(3), 634–643 (1987).
[Crossref]

Shen, S.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

Soljacic, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(10), A366–A384 (2012).
[Crossref] [PubMed]

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[Crossref] [PubMed]

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036615 (2006).
[Crossref] [PubMed]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Wei, Q.-H.

Z.-W. Liu, Q.-H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Xu, X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Zeman, E. J.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(3), 634–643 (1987).
[Crossref]

Zhang, X.

Z.-W. Liu, Q.-H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometrics: a brief overview,” J. Quant. Spectrosc. Radiat. Transf. 132(C), 3–11 (2014).
[Crossref]

Appl. Phys. Lett. (1)

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law,” Appl. Phys. Lett. 92(13), 133106 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

Electron. Lett. (1)

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

J. Phys. Chem. (1)

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(3), 634–643 (1987).
[Crossref]

J. Phys. Chem. C (1)

M. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometrics: a brief overview,” J. Quant. Spectrosc. Radiat. Transf. 132(C), 3–11 (2014).
[Crossref]

Nano Lett. (2)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Z.-W. Liu, Q.-H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Nature (3)

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1–4), 117–122 (1999).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, “Fluctuating-surface-current formulation of radiative heat transfer: theory and applications,” Phys. Rev. B 88(5), 054305 (2013).
[Crossref]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[Crossref] [PubMed]

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036615 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (4)

G. Moddel and S. Grover, Rectenna Solar Cells (Springer, 2013).

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).

S. M. Rytov, Y. A. Kravsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Elements of Random Fields (Springer Verlag, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) 3D sketch of the metamaterial thermal emitter. Cu substrate and SU-8 coating are colored yellow and pink, respectively. (b) The unit cell of the metamaterial thermal emitter. The structural periodicity is 24 μm along y direction as denoted in the picture. Direction z is out of the plane. 1 μm thick SU-8 is coated on the copper substrate and fills the groove. Other parameters are stated in the text. Copper is in yellow, SU-8 is in red, and vacuum is in black. (c) The reflectance spectrum of the metamaterial structure under far field TM polarized plane wave excitation with normal incident angle. (d) The bandstructure of metamaterial in logarithmic color scale. The color bar represents the coupling strength of electric dipole to the modes. ky is the mode wave number along the periodicity in y direction.

Fig. 2
Fig. 2

(a) Electromagnetic intensity enhancement over far field TM polarized plane wave excitation at 5 THz. The white dash line depicts the copper surface. (b) Near field thermal radiation intensity enhancement over far field at 5.1 THz under thermal excitation. The enhancement strength is shown by the color bar. (c) Averaged near field (1 μm above copper surface) intensity enhancement under far field TM polarized plane wave optical excitation. (d) Averaged near field (1 μm above copper surface) intensity enhancement under thermal excitation.

Fig. 3
Fig. 3

(a) Averaged relative intensity at 100 μm away from the metamaterial thermal source surface (red line), at 1 μm above the copper surface of metamaterial (blue line), and far field free space radiation intensity of the blackbody thermal source (black dash line). All thermal source temperatures are set to 600K. (b) Thermal radiation intensity enhancement over far field at 4.7 THz frequency.

Fig. 4
Fig. 4

Polarization of the thermal radiation in the near field (a) and in the far field (b). Ix and Iy are the intensity in the x and y direction, respectively.

Fig. 5
Fig. 5

The enhancement factor of electromagnetic energy density in the vicinity of aluminum surface (vacuum: z>0, aluminum: z<0) at the wavelength of 500 nm. The values are normalized to far field energy density. Simulations results are plotted with blue circles and analytical results with the red dashed line.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d 2 P d t 2 +γ dP dt + ω 0 2 P=σE+K(t)
K α (r,ω) K β * ( r ,ω) ¯ = 4 π σγI(ω,T) δ αβ δ(r r )
U(z,ω)=ρ(z,ω) ω exp(ω/ k B T)1
ρ(z,ω)= ρ v (ω) 2 { 0 1 κdκ q { 2+ κ 2 [ Re( r 12 s e i2qωz/c + r 12 p ) ] } + 0 κ 3 dκ | q | [ Im( r 12 s + r 12 p ) e 2| q |ωz/c ] }
EF(z,ω)= U(z,ω) U(z,ω) = ρ(z,ω) ρ v

Metrics