Abstract

We demonstrate a simple method to measure optomechanically induced transparency (OMIT) in a Fabry-Perot based system using a trampoline resonator. In OMIT, the transmitted intensity of a weak probe beam in the presence of a strong control beam is modified via the optomechanical interaction, leading to an ultra-narrow optical resonance. To retrieve both the magnitude and the phase of the probe beam, a homodyne detection technique is typically used. We have greatly simplified this method by using a single acousto-optical modulator to create a control and two probe beams. The beat signal between the transmitted control and probe beams shows directly the typical OMIT characteristics. This method therefore demonstrates an elegant solution when a homodyne field is needed but experimentally not accessible.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical side-band cooling of a low frequency optomechanical system

H. J. Eerkens, F. M. Buters, M. J. Weaver, B. Pepper, G. Welker, K. Heeck, P. Sonin, S. de Man, and D. Bouwmeester
Opt. Express 23(6) 8014-8020 (2015)

Normal-incidence reflection of slow atoms from an optical evanescent wave

Mark A. Kasevich, David S. Weiss, and Steven Chu
Opt. Lett. 15(11) 607-609 (1990)

Electromagnetically induced transparency and slow light in two-mode optomechanics

Cheng Jiang, Hongxiang Liu, Yuanshun Cui, Xiaowei Li, Guibin Chen, and Bin Chen
Opt. Express 21(10) 12165-12173 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
    [Crossref]
  2. V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
    [Crossref] [PubMed]
  3. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Communications 3(13), 1196 (2012).
    [Crossref] [PubMed]
  4. A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  5. K. -J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593 (1991).
    [Crossref] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(594), 594–598 (1999).
    [Crossref]
  7. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
    [Crossref] [PubMed]
  8. J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
    [Crossref] [PubMed]
  9. M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
    [Crossref]
  10. J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
    [Crossref]
  11. W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proceedings of the National Academy of Sciences, 201608412 (2016).
  12. G. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81(4), 041803 (2010).
    [Crossref]
  13. H. Eerkens, F. Buters, M. Weaver, B. Pepper, G. Welker, K. Heeck, P. Sonin, S. de Man, and D. Bouwmeester, “Optical side-band cooling of a low frequency optomechanical system,” Opt. Express 23(6), 8014–8020 (2015).
    [Crossref] [PubMed]
  14. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” American Journal of Physics 69(1), 79–87 (2001).
    [Crossref]
  15. M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
    [Crossref]
  16. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
    [Crossref] [PubMed]

2016 (1)

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

2015 (1)

2014 (2)

J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
[Crossref]

M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

2013 (1)

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

2012 (1)

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Communications 3(13), 1196 (2012).
[Crossref] [PubMed]

2011 (3)

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

2010 (2)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

G. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81(4), 041803 (2010).
[Crossref]

2009 (1)

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
[Crossref] [PubMed]

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” American Journal of Physics 69(1), 79–87 (2001).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(594), 594–598 (1999).
[Crossref]

1991 (1)

K. -J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593 (1991).
[Crossref] [PubMed]

Agarwal, G.

G. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81(4), 041803 (2010).
[Crossref]

Allegre, T. M.

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Allman, M.

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

Barbour, R.

V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Bawaj, M.

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(594), 594–598 (1999).
[Crossref]

Biancofiore, G.

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” American Journal of Physics 69(1), 79–87 (2001).
[Crossref]

Blair, D. G.

J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
[Crossref]

Boller, K. -J.

K. -J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593 (1991).
[Crossref] [PubMed]

Bouwmeester, D.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

H. Eerkens, F. Buters, M. Weaver, B. Pepper, G. Welker, K. Heeck, P. Sonin, S. de Man, and D. Bouwmeester, “Optical side-band cooling of a low frequency optomechanical system,” Opt. Express 23(6), 8014–8020 (2015).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
[Crossref] [PubMed]

Buters, F.

Buters, F. M.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

Chan, J.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Communications 3(13), 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chen, X.

J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
[Crossref]

Cicak, K.

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

de Man, S.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

H. Eerkens, F. Buters, M. Weaver, B. Pepper, G. Welker, K. Heeck, P. Sonin, S. de Man, and D. Bouwmeester, “Optical side-band cooling of a low frequency optomechanical system,” Opt. Express 23(6), 8014–8020 (2015).
[Crossref] [PubMed]

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(594), 594–598 (1999).
[Crossref]

Eerkens, H.

Eerkens, H. J.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Fiore, V.

V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Galassi, M.

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
[Crossref] [PubMed]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Giuseppe, G. Di

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(594), 594–598 (1999).
[Crossref]

K. -J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593 (1991).
[Crossref] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(594), 594–598 (1999).
[Crossref]

Heeck, K.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

H. Eerkens, F. Buters, M. Weaver, B. Pepper, G. Welker, K. Heeck, P. Sonin, S. de Man, and D. Bouwmeester, “Optical side-band cooling of a low frequency optomechanical system,” Opt. Express 23(6), 8014–8020 (2015).
[Crossref] [PubMed]

Hill, J. T.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Communications 3(13), 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Huang, S.

G. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81(4), 041803 (2010).
[Crossref]

Imamoglu, A.

K. -J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593 (1991).
[Crossref] [PubMed]

Ju, L.

J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
[Crossref]

Karuza, M.

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Kippenberg, T.J.

M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

Kuzyk, M.C.

V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Li, D.

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

Lin, Q.

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Luna, F.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

Ma, Y.

J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

Molinelli, C.

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Møller, C. B.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proceedings of the National Academy of Sciences, 201608412 (2016).

Natali, R.

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Nielsen, W. H. P.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proceedings of the National Academy of Sciences, 201608412 (2016).

Painter, O.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Communications 3(13), 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Pepper, B.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

H. Eerkens, F. Buters, M. Weaver, B. Pepper, G. Welker, K. Heeck, P. Sonin, S. de Man, and D. Bouwmeester, “Optical side-band cooling of a low frequency optomechanical system,” Opt. Express 23(6), 8014–8020 (2015).
[Crossref] [PubMed]

Perock, B.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

Polzik, E. S.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proceedings of the National Academy of Sciences, 201608412 (2016).

Qin, J.

J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
[Crossref]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Communications 3(13), 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proceedings of the National Academy of Sciences, 201608412 (2016).

Simmonds, R.

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

Sirois, A.

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

Sonin, P.

Teufel, J.

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

Tian, L.

V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Tombesi, P.

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Tsaturyan, Y.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proceedings of the National Academy of Sciences, 201608412 (2016).

Vitali, D.

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

Wang, H.

V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Weaver, M.

Weaver, M. J.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Welker, G.

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

H. Eerkens, F. Buters, M. Weaver, B. Pepper, G. Welker, K. Heeck, P. Sonin, S. de Man, and D. Bouwmeester, “Optical side-band cooling of a low frequency optomechanical system,” Opt. Express 23(6), 8014–8020 (2015).
[Crossref] [PubMed]

Whittaker, J.

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Yang, Y.

V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Zhao, C.

J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
[Crossref]

American Journal of Physics (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” American Journal of Physics 69(1), 79–87 (2001).
[Crossref]

Appl. Phys. Lett. (1)

M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Perock, K. Heeck, S. de Man, and D. Bouwmeester, “Nested Trampoline Resonators for Optomechanics,” Appl. Phys. Lett. 108, 033501 (2016).
[Crossref]

Nature (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(594), 594–598 (1999).
[Crossref]

A. H. Safavi-Naeini, T. M. Allegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

J. Teufel, D. Li, M. Allman, K. Cicak, A. Sirois, J. Whittaker, and R. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471(7337), 204–208 (2011).
[Crossref] [PubMed]

Nature Communications (1)

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Communications 3(13), 1196 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (3)

G. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81(4), 041803 (2010).
[Crossref]

M. Karuza, G. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]

J. Qin, C. Zhao, Y. Ma, X. Chen, L. Ju, and D. G. Blair, “Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency,” Phys. Rev. A 89(4), 041802 (2014).
[Crossref]

Phys. Rev. Lett. (2)

K. -J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593 (1991).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107(13), 133601 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]

Science (2)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
[Crossref] [PubMed]

Other (1)

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proceedings of the National Academy of Sciences, 201608412 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic overview of the placement and relative location for the control and probe beam. Δ indicates the detuning of the control beam with respect to the cavity resonance, and Ω is the probe detuning with respect to the control beam (a) The case with only a single probe. The two blue lines indicate the Stokes and anti-Stokes side-bands generated via the optomechanical interaction. (b) The case presented in this work, where two probes are used.
Fig. 2
Fig. 2 (a) Comparison of OMIT feature for one transmitted probe (blue) and two transmitted probes (red) with Ωm = 1.6 κ. The control beam is placed at Δ = −Ωm and the probe detuning Ω is varied. (b) Close-up of the OMIT feature.
Fig. 3
Fig. 3 Experimental set-up. This is a modified version of the set-up presented by Eerkens et al. [13]. The additional components needed to measure OMIT are highlighted with the dashed blue line. The RF drive signal to the AOM is modulated at the reference frequency of the lock-in amplifier to create a control and two probe beams. The transmitted intensity of the control and probe beams is analyzed using the lock-in amplifier. The components displayed are: LO: local oscillator, BS: beam splitter, PBS: polarizing beam splitter, EOM: electro-optical modulator, OI: optical isolator and PI: proportional-integral feedback controller
Fig. 4
Fig. 4 Demonstration of optomechanical induced transparency. The probe detuning Ω is varied for different values of the pump detuning Δ.
Fig. 5
Fig. 5 For a fixed control detuning of Δ = −Ωm the control beam power is varied. (a) The transparency window increases with laser power. (b) Transmitted probe intensity on resonance. (c) Phase of the transmitted probe. (d) Group delay obtained via the derivative of the phase.
Fig. 6
Fig. 6 Demonstration of optomechanically induced amplification by placing the pump at Δ = +Ωm. (a) Transmitted probe intensity (b) Phase of transmitted probe.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

t p = η κ χ a a ( Ω ) 1 + g 2 χ m e c h ( Ω ) χ a a ( Ω )
t p = η κ 2 χ a a ( Ω ) [ i + χ a a ( Ω ) Ω ] i + 2 χ a a ( Ω ) Ω [ 1 + g 2 χ m e c h ( Ω ) χ a a ( Ω ) ] .
| t p | 2 = ( 2 η 1 + C ) 2 | 1 + 1 + 2 C 1 + i 4 ( 1 + C ) Ω m / κ | 2 .
| t p | 2 = ( 2 η 1 + C ) 2 .
τ g = d ϕ d Ω
τ g = 2 Γ m ( C C + 1 ) ( 1 + 1 1 + 16 ( 1 + C ) 2 Ω m 2 / κ 2 ) .
d a ( t ) d t = ( i ( Δ + G x ( t ) ) κ 2 ) a ( t ) + η κ s i n ( t )
d 2 x ( t ) d t 2 = Γ m d x ( t ) d t Ω m 2 x ( t ) + G m | a ( t ) | 2
d δ a ( t ) d t = ( i [ Δ + G ( x ¯ + δ x ( t ) ) ] κ 2 ) ( a ¯ + δ a ( t ) ) + η κ ( s ¯ i n + δ s i n ( t ) )
d 2 δ x ( t ) d t 2 = Γ m d δ x ( t ) d t Ω m 2 ( x ¯ + δ x ( t ) ) + G m [ ( a ¯ + δ a ( t ) ) ( a ¯ * + δ a * ( t ) ) ]
a ¯ = η κ s ¯ i n i ( Δ + G x ¯ ) κ / 2
x ¯ = G m Ω m 2 | a ¯ | 2 .
d δ a ( t ) d t = ( i Δ κ 2 ) δ a ( t ) + i G a ¯ δ x ( t ) + δ s i n ( t )
d 2 δ x ( t ) d t 2 = Γ m d δ x ( t ) d t Ω m 2 δ x ( t ) + G a ¯ m [ δ a ( t ) + δ a * ( t ) ]
δ a ( t ) = A e i Ω t + A + e i Ω t
δ a * ( t ) = ( A + ) * e i Ω t + ( A ) * e + i Ω t
δ x ( t ) = X e i Ω t + X * e + i Ω t .
A + = s p η κ χ a a ( Ω ) [ i 2 χ a a ( Ω ) Ω ] i + 2 χ a a ( Ω ) Ω [ 1 + g 2 χ m e c h ( Ω ) χ a a ( Ω ) ]
A = s p η κ i χ a a ( Ω ) i + 2 χ a a ( Ω ) Ω [ 1 + g 2 χ m e c h ( Ω ) χ a a ( Ω ) ] .
t p = η κ s p [ A + + A ]
t p = η κ s p ( η κ + κ l o s s ) [ A + + A ]

Metrics