Abstract

A hybrid integration of nanoplasmonic antennas with silicon nitride waveguides enables miniaturized chips for surface-enhanced Raman spectroscopy at visible and near-infrared wavelengths. This integration can result in high-throughput SERS assays on low sampling volumes. However, current fabrication methods are complex and rely on electron-beam lithography, thereby obstructing the full use of an integrated photonics platform. Here, we demonstrate the electron-beam-free fabrication of gold nanotriangles on deep-UV patterned silicon nitride waveguides using nanosphere lithography. The localized surface-plasmon resonance of these nanotriangles is optimized for Raman excitation at 785 nm, resulting in a SERS substrate enhancement factor of 2.5 × 105. Furthermore, the SERS signal excited and collected through the waveguide is as strong as the free-space excited and collected signal through a high NA objective.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide

Frédéric Peyskens, Ananth Z. Subramanian, Pieter Neutens, Ashim Dhakal, Pol Van Dorpe, Nicolas Le Thomas, and Roel Baets
Opt. Express 23(3) 3088-3101 (2015)

Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]

Ananth Z. Subramanian, Eva Ryckeboer, Ashim Dhakal, Frédéric Peyskens, Aditya Malik, Bart Kuyken, Haolan Zhao, Shibnath Pathak, Alfonso Ruocco, Andreas De Groote, Pieter Wuytens, Daan Martens, Francois Leo, Weiqiang Xie, Utsav Deepak Dave, Muhammad Muneeb, Pol Van Dorpe, Joris Van Campenhout, Wim Bogaerts, Peter Bienstman, Nicolas Le Thomas, Dries Van Thourhout, Zeger Hens, Gunther Roelkens, and Roel Baets
Photon. Res. 3(5) B47-B59 (2015)

A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles

Lingbo Kong, Changwon Lee, Christopher M. Earhart, Bernardo Cordovez, and James W. Chan
Opt. Express 23(5) 6793-6802 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [Crossref] [PubMed]
  2. E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
    [Crossref] [PubMed]
  3. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
    [Crossref]
  4. D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
    [Crossref]
  5. X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a SiN waveguide platform,” in CLEO 2016 (2016), pp. 4–5.
  6. E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
    [Crossref]
  7. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
    [Crossref]
  8. M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, and P. Van Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4, 495–500 (2017).
    [Crossref]
  9. A. Dhakal, A. Z. Subramanian, P. C. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
    [Crossref] [PubMed]
  10. A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
    [Crossref]
  11. Z. Wang, M. N. Zervas, P. N. Bartlett, and J. S. Wilkinson, “Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy,” Opt. Lett. 41, 4146–4149 (2016).
    [Crossref] [PubMed]
  12. C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3, 1662–1669 (2016).
    [Crossref]
  13. T. H. Stievater, S. A. Holmstrom, D. A. Kozak, R. A. Mcgill, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, and J. B. Khurgin, “Trace-Gas Raman Spectroscopy Using Functionalized Waveguides,” Optica 3, 891–896 (2016).
    [Crossref]
  14. S. Schlücker, “Surface-enhanced raman spectroscopy: Concepts and chemical applications,” Angewandte Chemie -International Edition 53, 4756–4795 (2014).
    [Crossref] [PubMed]
  15. A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24, 9592–9601 (2016).
    [Crossref] [PubMed]
  16. F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
    [Crossref]
  17. F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3, 102–108 (2016).
    [Crossref]
  18. M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21, 32086–32098 (2013).
    [Crossref]
  19. P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
    [Crossref]
  20. L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23, 6793 (2015).
    [Crossref] [PubMed]
  21. S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
    [Crossref] [PubMed]
  22. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
    [Crossref]
  23. M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
    [Crossref]
  24. M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15, 5301 (2013).
    [Crossref] [PubMed]
  25. A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
    [Crossref] [PubMed]
  26. F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).
    [Crossref] [PubMed]
  27. E. Le Ru, M. Meyer, and P. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
    [Crossref]
  28. L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982–23986 (2006).
    [Crossref] [PubMed]
  29. P. C. Wuytens, A. Z. Subramanian, W. H. De Vos, A. G. Skirtach, and R. Baets, “Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy,” Analyst 140, 8080–8087 (2015).
    [Crossref] [PubMed]

2017 (2)

M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, and P. Van Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4, 495–500 (2017).
[Crossref]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

2016 (6)

Z. Wang, M. N. Zervas, P. N. Bartlett, and J. S. Wilkinson, “Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy,” Opt. Lett. 41, 4146–4149 (2016).
[Crossref] [PubMed]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3, 1662–1669 (2016).
[Crossref]

T. H. Stievater, S. A. Holmstrom, D. A. Kozak, R. A. Mcgill, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, and J. B. Khurgin, “Trace-Gas Raman Spectroscopy Using Functionalized Waveguides,” Optica 3, 891–896 (2016).
[Crossref]

A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24, 9592–9601 (2016).
[Crossref] [PubMed]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3, 102–108 (2016).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

2015 (6)

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23, 6793 (2015).
[Crossref] [PubMed]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
[Crossref] [PubMed]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).
[Crossref] [PubMed]

P. C. Wuytens, A. Z. Subramanian, W. H. De Vos, A. G. Skirtach, and R. Baets, “Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy,” Analyst 140, 8080–8087 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (5)

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21, 32086–32098 (2013).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref] [PubMed]

M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15, 5301 (2013).
[Crossref] [PubMed]

2012 (1)

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[Crossref]

2007 (3)

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

E. Le Ru, M. Meyer, and P. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

2006 (1)

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982–23986 (2006).
[Crossref] [PubMed]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Adibi, A.

Arango, F. B.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[Crossref]

Astilean, S.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982–23986 (2006).
[Crossref] [PubMed]

Baets, R.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3, 102–108 (2016).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

P. C. Wuytens, A. Z. Subramanian, W. H. De Vos, A. G. Skirtach, and R. Baets, “Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy,” Analyst 140, 8080–8087 (2015).
[Crossref] [PubMed]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
[Crossref] [PubMed]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).
[Crossref] [PubMed]

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
[Crossref] [PubMed]

A. Dhakal, A. Z. Subramanian, P. C. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a SiN waveguide platform,” in CLEO 2016 (2016), pp. 4–5.

Baets, R. G.

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

Baia, L.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982–23986 (2006).
[Crossref] [PubMed]

Baia, M.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982–23986 (2006).
[Crossref] [PubMed]

Bartlett, P. N.

Bartolozzi, I.

Bienstman, P.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

Bockstaele, R.

Bogaerts, W.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Campenhout, J. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Chamanzar, M.

Chan, J. W.

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Clemmen, S.

Cordovez, B.

Crozier, K. B.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref] [PubMed]

Dave, U. D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

De Vos, K.

De Vos, W. H.

P. C. Wuytens, A. Z. Subramanian, W. H. De Vos, A. G. Skirtach, and R. Baets, “Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy,” Analyst 140, 8080–8087 (2015).
[Crossref] [PubMed]

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Dhakal, A.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3, 102–108 (2016).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
[Crossref] [PubMed]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).
[Crossref] [PubMed]

A. Dhakal, A. Z. Subramanian, P. C. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Dorpe, P. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Dubois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Duyne, R. P. V.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Earhart, C. M.

Espinosa-Soria, A.

Etchegoin, P.

E. Le Ru, M. Meyer, and P. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Evans, C. C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3, 1662–1669 (2016).
[Crossref]

Griol, A.

Groote, A. D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Gustavsson, J. S.

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

Haglund, E. P.

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

Hawkins, A. R.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Hens, Z.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Holmstrom, S. A.

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Jin, Y.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref] [PubMed]

Kazemi-Sanjani, N.

M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Khurgin, J. B.

Koenderink, A. F.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[Crossref]

Kong, L.

Kozak, D. A.

Kumari, S.

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

Kuyken, B.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Kwadrin, A.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[Crossref]

Lagae, L.

M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, and P. Van Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4, 495–500 (2017).
[Crossref]

Lagugné-Labarthet, F.

M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Larsson, A.

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

Le Thomas, N.

Lee, C.

Leo, F.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Lin, S.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref] [PubMed]

Liu, C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3, 1662–1669 (2016).
[Crossref]

Lunt, E. J.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

Mahmud-Ul-Hasan, M.

M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, and P. Van Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4, 495–500 (2017).
[Crossref]

Malik, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Martens, D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

Martínez, A.

Mcgill, R. A.

Measor, P.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

Merlen, A.

M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Meyer, M.

E. Le Ru, M. Meyer, and P. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Moskovits, M.

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15, 5301 (2013).
[Crossref] [PubMed]

Muneeb, M.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Neutens, P.

M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, and P. Van Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4, 495–500 (2017).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Nie, X.

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a SiN waveguide platform,” in CLEO 2016 (2016), pp. 4–5.

Pathak, S.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Peyskens, F.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3, 102–108 (2016).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).
[Crossref] [PubMed]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
[Crossref] [PubMed]

A. Dhakal, A. Z. Subramanian, P. C. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Popp, J.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982–23986 (2006).
[Crossref] [PubMed]

Pruessner, M. W.

Rabinovich, W. S.

Raza, A.

Roelkens, G.

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a SiN waveguide platform,” in CLEO 2016 (2016), pp. 4–5.

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Ru, E. Le

E. Le Ru, M. Meyer, and P. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Ruocco, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Ryckeboer, E.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
[Crossref] [PubMed]

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a SiN waveguide platform,” in CLEO 2016 (2016), pp. 4–5.

Sangar, A.

M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Schacht, E.

Schlücker, S.

S. Schlücker, “Surface-enhanced raman spectroscopy: Concepts and chemical applications,” Angewandte Chemie -International Edition 53, 4756–4795 (2014).
[Crossref] [PubMed]

Schmidt, H.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

Seballos, L.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Skirtach, A. G.

P. C. Wuytens, A. Z. Subramanian, W. H. De Vos, A. G. Skirtach, and R. Baets, “Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy,” Analyst 140, 8080–8087 (2015).
[Crossref] [PubMed]

Stievater, T. H.

Subramanian, A. Z.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

P. C. Wuytens, A. Z. Subramanian, W. H. De Vos, A. G. Skirtach, and R. Baets, “Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy,” Analyst 140, 8080–8087 (2015).
[Crossref] [PubMed]

A. Dhakal, A. Raza, F. Peyskens, A. Z. Subramanian, S. Clemmen, N. Le Thomas, and R. Baets, “Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides,” Opt. Express 23, 27391–27404 (2015).
[Crossref] [PubMed]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).
[Crossref] [PubMed]

A. Dhakal, A. Z. Subramanian, P. C. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Suntivich, J.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3, 1662–1669 (2016).
[Crossref]

Tabatabaei, M.

M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Thomas, N. L.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Thourhout, D. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Torchio, P.

M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Tyndall, N.

Van Dorpe, P.

M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, and P. Van Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4, 495–500 (2017).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3, 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23, 3088–3101 (2015).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

Vanslembrouck, M.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
[Crossref] [PubMed]

Vos, R.

M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, and P. Van Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4, 495–500 (2017).
[Crossref]

Wang, Z.

Westbergh, P.

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

Wilkinson, J. S.

Wuytens, P.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Wuytens, P. C.

P. C. Wuytens, A. Z. Subramanian, W. H. De Vos, A. G. Skirtach, and R. Baets, “Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy,” Analyst 140, 8080–8087 (2015).
[Crossref] [PubMed]

A. Dhakal, A. Z. Subramanian, P. C. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref] [PubMed]

Xia, Z.

Xie, W.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Yegnanarayanan, S.

Yin, D.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

Zervas, M. N.

Zhang, J. Z.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

Zhao, H.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Zhu, W.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref] [PubMed]

ACS Nano (1)

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[Crossref]

ACS Photonics (3)

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3, 102–108 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3, 1662–1669 (2016).
[Crossref]

M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, and P. Van Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4, 495–500 (2017).
[Crossref]

Analyst (1)

P. C. Wuytens, A. Z. Subramanian, W. H. De Vos, A. G. Skirtach, and R. Baets, “Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy,” Analyst 140, 8080–8087 (2015).
[Crossref] [PubMed]

Angewandte Chemie -International Edition (1)

S. Schlücker, “Surface-enhanced raman spectroscopy: Concepts and chemical applications,” Angewandte Chemie -International Edition 53, 4756–4795 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90, 1–4 (2007).
[Crossref]

Biomed. Opt. Express (1)

IEEE Photonics J. (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5, 2202809 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27, 137–140 (2015).
[Crossref]

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, “20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs,” IEEE Photonics Technol. Lett. 28, 856–859 (2016).
[Crossref]

J. Phys. Chem. B (2)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. V. Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982–23986 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

E. Le Ru, M. Meyer, and P. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

M. Tabatabaei, A. Sangar, N. Kazemi-Sanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” J. Phys. Chem. C 117, 14778–14786 (2013).
[Crossref]

Materials (1)

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials 10, 140 (2017).
[Crossref]

Nano Lett. (1)

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Photonics Res. (1)

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, 47–59 (2015).
[Crossref]

Phys. Chem. Chem. Phys. (1)

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15, 5301 (2013).
[Crossref] [PubMed]

Other (1)

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a SiN waveguide platform,” in CLEO 2016 (2016), pp. 4–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simplified processing scheme for patterning SiN waveguides with gold nanotriangles.

Fig. 2
Fig. 2

SEM image of (a) a hexagonally close-packed monolayer of polystyrene beads in photoresist across the SiN waveguide and (b-d) a typical gold nanotriangle pattern on the waveguide.

Fig. 3
Fig. 3

(a) Absorption spectra of waveguides decorated with increasing lengths of nanotriangle patterns. The LSPR-absorption shows a good overlap with a 785 nm pump laser and a 1139 cm−1 Stokes shift, respectively green and red shaded. (b) Absorption versus nanotriangle length at pump and Stokes wavelength measured on four different waveguides for each length. A linear fit to the data gives an absorption of 2.7 ± 0.5 dB/µm at Stokes and 1.7 ± 0.5 dB/µm at the pump wavelength.(c) SERS signal strength in function of the length of the nanotriangle section, showing that the maximum signal is already reached for a 2.5 µm length. The orange bars give the average of at least 8 different measurements. The solid blue curve shows the calculated signal strength versus length when collecting the backwards Stokes scattered light in a reflection mode, as used in this work. The red curve shows the forward collected Stokes power in a transmission mode.

Fig. 4
Fig. 4

(a) Schematic of the confocal microscope used for collecting Stokes scattered light from both waveguide- and free-space coupled nanotriangles. (b) Camera image of the chip in bright field (left) and dark field (right). Light is coupled from the top into the vertically oriented waveguides, and propagates along the waveguide (green arrow) until the nanotriangle section. Stokes scattered light is collected in reflection (red-dashed arrow). Scattering of the pump laser can be seen at the entrance facet and nanotriangle section.

Fig. 5
Fig. 5

(a) 4-NTP SERS signal acquired through the waveguide (solid blue) and the SiN background spectrum on a blank reference waveguide (dashed green). The 1339 cm−1 is used for quantifying the enhancement factor. The inset shows a characteristic peak for our SiN at 2330 cm−1. (b) Waveguide collected SERS spectrum (solid blue) after subtracting the SiN background and scaling with the coupling losses, compared to a free-space collected SERS spectrum (dashed red) acquired on the same nanotriangle section. (c) SSEF for free-space excitation and collection compared to the signal strength using a waveguide-based measurement, acquired on multiple waveguides on two different chips.

Metrics