Abstract

We present a fiber-coupled terahertz quasi time-domain spectroscopy system driven by a laser with a central wavelength of 1550 nm. By using a commercially available multimode laser diode in combination with state-of-the-art continuous wave antennas, a bandwidth of more than 1.8 THz is achieved. The peak signal-to-noise ratio is around 60 dB. A simulation based on the optical spectrum of the laser diode and the transfer function of the THz path is in agreement with the experimental results. The system is used to extract the refractive index from two different samples and the results indicate that the performance is up to 1.8 THz comparable to a terahertz time-domain spectroscopy system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing the performance of THz quasi time-domain spectroscopy systems by low duty cycle laser operation

Arno Rehn, Mikhail Mikerov, Sascha Preu, Martin Koch, and Jan. C. Balzer
Opt. Express 26(25) 32758-32764 (2018)

Continuous wave terahertz spectrometer as a noncontact thickness measuring device

Rafał Wilk, Falk Breitfeld, Martin Mikulics, and Martin Koch
Appl. Opt. 47(16) 3023-3026 (2008)

Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength

Anika Brahm, Annika Wilms, Roman J. B. Dietz, Thorsten Göbel, Martin Schell, Gunther Notni, and Andreas Tünnermann
Opt. Express 22(11) 12982-12993 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
    [Crossref]
  2. O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
    [Crossref]
  3. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
    [Crossref]
  4. T. Hochrein, “Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends,” J. Infrared Millim. Terahertz Waves 36(3), 235–254 (2015).
    [Crossref]
  5. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
    [Crossref]
  6. M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).
  7. M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna,” IEEE Microw. Guided Wave Lett. 7(9), 282–284 (1997).
    [Crossref]
  8. M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17(20), 17723–17733 (2009).
    [Crossref] [PubMed]
  9. O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
    [Crossref]
  10. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
    [Crossref]
  11. D. Molter, A. Wagner, S. Weber, J. Jonuscheit, and R. Beigang, “Combless broadband terahertz generation with conventional laser diodes,” Opt. Express 19(6), 5290–5296 (2011).
    [Crossref] [PubMed]
  12. M. Scheller, S. F. Dürrschmidt, M. Stecher, and M. Koch, “Terahertz quasi-time-domain spectroscopy imaging,” Appl. Opt. 50(13), 1884–1888 (2011).
    [Crossref] [PubMed]
  13. T. Göbel, D. Stanze, B. Globisch, R. J. B. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
    [Crossref] [PubMed]
  14. J. C. Estrada, M. Servin, and J. A. Quiroga, “Noise robust linear dynamic system for phase unwrapping and smoothing,” Opt. Express 19(6), 5126–5133 (2011).
    [Crossref] [PubMed]
  15. B. Sartorius, D. Stanze, T. Göbel, D. Schmidt, and M. Schell, “Continuous wave terahertz systems based on 1.5 μm telecom technologies,” J. Infrared Millim. Terahertz Waves 33(4), 405–417 (2012).
    [Crossref]
  16. J. A. Nelder and R. Mead, “B. J. a Nelder, and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
    [Crossref]
  17. C. Brenner, M. Hofmann, M. Scheller, M. K. Shakfa, M. Koch, I. C. Mayorga, A. Klehr, G. Erbert, and G. Tränkle, “Compact diode-laser-based system for continuous-wave and quasi-time-domain terahertz spectroscopy,” Opt. Lett. 35(23), 3859–3861 (2010).
    [Crossref] [PubMed]
  18. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
    [Crossref] [PubMed]
  19. M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, “Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil,” Trans. ASABE 59(3), 795–801 (2016).
    [Crossref]

2016 (2)

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, “Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil,” Trans. ASABE 59(3), 795–801 (2016).
[Crossref]

2015 (1)

T. Hochrein, “Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends,” J. Infrared Millim. Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

2014 (1)

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

2013 (2)

T. Göbel, D. Stanze, B. Globisch, R. J. B. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
[Crossref] [PubMed]

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

2012 (1)

B. Sartorius, D. Stanze, T. Göbel, D. Schmidt, and M. Schell, “Continuous wave terahertz systems based on 1.5 μm telecom technologies,” J. Infrared Millim. Terahertz Waves 33(4), 405–417 (2012).
[Crossref]

2011 (3)

2010 (2)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

C. Brenner, M. Hofmann, M. Scheller, M. K. Shakfa, M. Koch, I. C. Mayorga, A. Klehr, G. Erbert, and G. Tränkle, “Compact diode-laser-based system for continuous-wave and quasi-time-domain terahertz spectroscopy,” Opt. Lett. 35(23), 3859–3861 (2010).
[Crossref] [PubMed]

2009 (2)

I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
[Crossref]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17(20), 17723–17733 (2009).
[Crossref] [PubMed]

2005 (2)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
[Crossref] [PubMed]

2000 (1)

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

1997 (1)

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna,” IEEE Microw. Guided Wave Lett. 7(9), 282–284 (1997).
[Crossref]

1965 (1)

J. A. Nelder and R. Mead, “B. J. a Nelder, and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Abdulmunem, O. M.

M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, “Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil,” Trans. ASABE 59(3), 795–801 (2016).
[Crossref]

Araki, T.

Balzer, J. C.

M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, “Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil,” Trans. ASABE 59(3), 795–801 (2016).
[Crossref]

Beigang, R.

Brenner, C.

Cámara Mayorga, I. C.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Cojocari, O.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

Deninger, A.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Dietz, R.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Dietz, R. J. B.

Duling, I.

I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
[Crossref]

Dürrschmidt, S. F.

Erbert, G.

Estrada, J. C.

Fischer, B. M.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Globisch, B.

Göbel, T.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

T. Göbel, D. Stanze, B. Globisch, R. J. B. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
[Crossref] [PubMed]

B. Sartorius, D. Stanze, T. Göbel, D. Schmidt, and M. Schell, “Continuous wave terahertz systems based on 1.5 μm telecom technologies,” J. Infrared Millim. Terahertz Waves 33(4), 405–417 (2012).
[Crossref]

Grüninger, M.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Güsten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Hangyo, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna,” IEEE Microw. Guided Wave Lett. 7(9), 282–284 (1997).
[Crossref]

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Hochrein, T.

T. Hochrein, “Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends,” J. Infrared Millim. Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

Hofmann, M.

Holzwarth, R.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Jonuscheit, J.

Klehr, A.

Koch, M.

M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, “Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil,” Trans. ASABE 59(3), 795–801 (2016).
[Crossref]

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

M. Scheller, S. F. Dürrschmidt, M. Stecher, and M. Koch, “Terahertz quasi-time-domain spectroscopy imaging,” Appl. Opt. 50(13), 1884–1888 (2011).
[Crossref] [PubMed]

C. Brenner, M. Hofmann, M. Scheller, M. K. Shakfa, M. Koch, I. C. Mayorga, A. Klehr, G. Erbert, and G. Tränkle, “Compact diode-laser-based system for continuous-wave and quasi-time-domain terahertz spectroscopy,” Opt. Lett. 35(23), 3859–3861 (2010).
[Crossref] [PubMed]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17(20), 17723–17733 (2009).
[Crossref] [PubMed]

Matsuura, S.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna,” IEEE Microw. Guided Wave Lett. 7(9), 282–284 (1997).
[Crossref]

Mayorga, I. C.

Mead, R.

J. A. Nelder and R. Mead, “B. J. a Nelder, and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Molter, D.

Morikawa, O.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

Nelder, J. A.

J. A. Nelder and R. Mead, “B. J. a Nelder, and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Peters, O.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Quiroga, J. A.

Rettich, F.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Reuter, M.

M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, “Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil,” Trans. ASABE 59(3), 795–801 (2016).
[Crossref]

Roehle, H.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

T. Göbel, D. Stanze, B. Globisch, R. J. B. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
[Crossref] [PubMed]

Roggenbuck, A.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Sakai, K.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna,” IEEE Microw. Guided Wave Lett. 7(9), 282–284 (1997).
[Crossref]

Sartorius, B.

B. Sartorius, D. Stanze, T. Göbel, D. Schmidt, and M. Schell, “Continuous wave terahertz systems based on 1.5 μm telecom technologies,” J. Infrared Millim. Terahertz Waves 33(4), 405–417 (2012).
[Crossref]

Sawanaka, K.

Schell, M.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

T. Göbel, D. Stanze, B. Globisch, R. J. B. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
[Crossref] [PubMed]

B. Sartorius, D. Stanze, T. Göbel, D. Schmidt, and M. Schell, “Continuous wave terahertz systems based on 1.5 μm telecom technologies,” J. Infrared Millim. Terahertz Waves 33(4), 405–417 (2012).
[Crossref]

Scheller, M.

Scheunemann, R.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Schmidt, D.

B. Sartorius, D. Stanze, T. Göbel, D. Schmidt, and M. Schell, “Continuous wave terahertz systems based on 1.5 μm telecom technologies,” J. Infrared Millim. Terahertz Waves 33(4), 405–417 (2012).
[Crossref]

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Schwerdtfeger, M.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Servin, M.

Shakfa, M. K.

Sostmann, S.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Stanze, D.

T. Göbel, D. Stanze, B. Globisch, R. J. B. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
[Crossref] [PubMed]

B. Sartorius, D. Stanze, T. Göbel, D. Schmidt, and M. Schell, “Continuous wave terahertz systems based on 1.5 μm telecom technologies,” J. Infrared Millim. Terahertz Waves 33(4), 405–417 (2012).
[Crossref]

Stecher, M.

Tani, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna,” IEEE Microw. Guided Wave Lett. 7(9), 282–284 (1997).
[Crossref]

Tonouchi, M.

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

Tränkle, G.

Vieweg, N.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Wagner, A.

Watson, D. G.

M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, “Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil,” Trans. ASABE 59(3), 795–801 (2016).
[Crossref]

Weber, S.

Wietzke, S.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Wilk, R.

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Yahyapour, M.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

Yasuda, T.

Yasui, T.

Zimdars, D.

I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

Comput. J. (1)

J. A. Nelder and R. Mead, “B. J. a Nelder, and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

IEEE Microw. Guided Wave Lett. (1)

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna,” IEEE Microw. Guided Wave Lett. 7(9), 282–284 (1997).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible Phase-Insensitive System for Broadband CW-Terahertz Spectroscopy and Imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

J. Infrared Millim. Terahertz Waves (3)

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

T. Hochrein, “Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends,” J. Infrared Millim. Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

B. Sartorius, D. Stanze, T. Göbel, D. Schmidt, and M. Schell, “Continuous wave terahertz systems based on 1.5 μm telecom technologies,” J. Infrared Millim. Terahertz Waves 33(4), 405–417 (2012).
[Crossref]

Nat. Photonics (1)

I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nat. Photonics 3(11), 630–632 (2009).
[Crossref]

New J. Phys. (1)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Polym. Test. (1)

O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test. 32(5), 932–936 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Trans. ASABE (1)

M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, “Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil,” Trans. ASABE 59(3), 795–801 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the experimental setup used for the QTDS measurements. The setup consists of a commercially available multimode laser diode which is coupled into a single mode (SM) fiber and split into two optical arms. The optical arm leading to the detector (THz-Rx) contains an optical delay unit. The THz emitter (THz-Tx) and detector require linearly polarized light and are fiber-coupled with polarization maintaining (PM) fibers. In order to ensure the correct polarization, we use a polarization controller and filter.
Fig. 2
Fig. 2 Optical spectrum of the multimode laser diode at an injection current of 490 mA. The spectral resolution of this measurement is 0.06 nm which corresponds to approx. 7.5 GHz. The inset illustrates the FWHM of 8.8 nm.
Fig. 3
Fig. 3 Measured cw THz spectra for two different optical excitation powers. For both measurements the emitter is biased with −1.5 V at 15 kHz. The optical power at the detector is given in the figure. An integration time of 300 ms is used. For the black spectrum the optical power at the emitter is 30 mW, for the red spectrum 9 mW. The horizontal lines correspond to the noise level of the illuminated detector antenna without any incident THz radiation.
Fig. 4
Fig. 4 Quasi time-domain spectroscopy measurements in the time- (a) and frequency-domain (b) for 9 mW at the emitter and 3.5 mW at the detector. The lock-in integration time is 30 ms and the step size of the optical delay unit 100 fs. A bandwidth greater than 1.8 THz and a SNR of 60 dB at 300 GHz is achieved.
Fig. 5
Fig. 5 Comparison between the measured data (black) obtained by QTDS and the simulated data (red) based on the optical spectrum and the extracted antenna and THz path characteristic both in the time- (a) and frequency-domain (b). As can be seen, measurement and simulation are in good agreement.
Fig. 6
Fig. 6 Extracted refractive index of a polyoxymethylene (POM) sample and a ceramic film. The refractive index was calculated from both QTDS and TDS measurements. As can be seen, both approaches yield the same values of the refractive index over the full frequency range for both samples.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E THz (t) J emi (t) t .
E THz (t) I eff (t) t .
E THz (t) t [ i=1 N Δω A i sin( ω i t+ φ i ) ] 2 = t i,j N Δω A i A j sin( ω i t+ φ i ) sin( ω j t+ φ j ) i=1 N1 j=i+1 N Δω A i A j cos( (ji)Δωt+Δ φ ij ) .
J det (t)σ(t) E THz (t)I(t) I eff (t) t .
J det (ω)iω|I(ω) | 2 .
E i (ω) 1 2π (δω) 2 [ exp( (ω ω i ) 2 2 (δω) 2 )+exp( (ω+ ω i ) 2 2 (δω) 2 ) ].
I(ω)=[ ( i E i (t) ) 2 ](ω)=[ i,j E i (t) E j (t) ](ω)= i,j ( E i E j )(ω) .
J det (ω)iωH(ω)|I(ω) | 2 .

Metrics