Abstract

A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry

R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman
Opt. Express 15(23) 15464-15479 (2007)

Fiber-assisted single-photon spectrograph

Malte Avenhaus, Andreas Eckstein, Peter J. Mosley, and Christine Silberhorn
Opt. Lett. 34(18) 2873-2875 (2009)

Efficient generation and characterization of spectrally factorable biphotons

Changchen Chen, Cao Bo, Murphy Yuezhen Niu, Feihu Xu, Zheshen Zhang, Jeffrey H. Shapiro, and Franco N. C. Wong
Opt. Express 25(7) 7300-7312 (2017)

References

  • View by:
  • |
  • |
  • |

  1. LIGO collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photon. 7, 613–619 (2013).
    [Crossref]
  2. R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, “The elusive Heisenberg limit in quantum-enhanced metrology,” Nat. Commun. 3, 1063 (2012).
  3. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
    [Crossref]
  4. J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Quantum key distribution with multi-mode time-frequency entangled photons,” Opt. Express 21, 15959–15973 (2013).
    [Crossref] [PubMed]
  5. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
    [Crossref]
  6. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Demonstration of nondeterministic quantum logic operations using linear optical elements,” Phys. Rev. Lett. 88, 257902 (2002).
    [Crossref] [PubMed]
  7. H. Sasada and M. Okamoto, “Transverse-mode beam splitter of a light beam and its application to quantum cryptography,” Phys. Rev. A 68, 012323 (2003).
    [Crossref]
  8. P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
    [Crossref] [PubMed]
  9. B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
  10. B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
    [Crossref] [PubMed]
  11. Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
    [Crossref]
  12. V. Torres-Company, J. Lancis, and P. Andrés, “Space–time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
    [Crossref]
  13. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon. 7, 102–112 (2013).
    [Crossref]
  14. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
    [Crossref]
  15. M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, “Custom design of long chirped bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photonics Technol. Lett. 12, 498–500 (2000).
    [Crossref]
  16. P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41, 5074–5077 (2016).
    [Crossref] [PubMed]
  17. Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion,” Opt. Lett. 30, 908–910 (2005).
    [Crossref] [PubMed]
  18. W. Wasilewski, P. Wasylczyk, P. Kolenderski, K. Banaszek, and C. Radzewicz, “Joint spectrum of photon pairs measured by coincidence Fourier spectroscopy,” Opt. Lett. 31, 1130–1132 (2006).
    [Crossref] [PubMed]
  19. F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensor. Actuat. A: Phys. 140, 103–112 (2007).
    [Crossref]
  20. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009).
    [Crossref] [PubMed]
  21. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24, 1–3 (1999).
    [Crossref]
  22. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quant. Electron. 36, 517–526 (2000).
    [Crossref]
  23. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref] [PubMed]
  24. B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
    [Crossref]
  25. E. Poem, T. Hiemstra, A. Eckstein, X.-M. Jin, and I. A. Walmsley, “Free-space spectro-temporal and spatio-temporal conversion for pulsed light,” Opt. Lett. 41, 4328–4331 (2016).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

2014 (2)

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
[Crossref]

2013 (3)

LIGO collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photon. 7, 613–619 (2013).
[Crossref]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Quantum key distribution with multi-mode time-frequency entangled photons,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon. 7, 102–112 (2013).
[Crossref]

2012 (1)

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, “The elusive Heisenberg limit in quantum-enhanced metrology,” Nat. Commun. 3, 1063 (2012).

2011 (1)

V. Torres-Company, J. Lancis, and P. Andrés, “Space–time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

2009 (1)

2008 (3)

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[Crossref]

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

2007 (1)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensor. Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

2006 (1)

2005 (2)

2003 (1)

H. Sasada and M. Okamoto, “Transverse-mode beam splitter of a light beam and its application to quantum cryptography,” Phys. Rev. A 68, 012323 (2003).
[Crossref]

2002 (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Demonstration of nondeterministic quantum logic operations using linear optical elements,” Phys. Rev. Lett. 88, 257902 (2002).
[Crossref] [PubMed]

2000 (2)

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, “Custom design of long chirped bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photonics Technol. Lett. 12, 498–500 (2000).
[Crossref]

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quant. Electron. 36, 517–526 (2000).
[Crossref]

1999 (1)

1997 (1)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

Andrés, P.

V. Torres-Company, J. Lancis, and P. Andrés, “Space–time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

Avenhaus, M.

Azaña, J.

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quant. Electron. 36, 517–526 (2000).
[Crossref]

M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24, 1–3 (1999).
[Crossref]

Banaszek, K.

Barbieri, M.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

Bienfang, J. C.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Brecht, B.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[Crossref]

Carballar, A.

Chan, L. Y.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

Cohen, O.

Cova, S.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensor. Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Datta, A.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

Demkowicz-Dobrzanski, R.

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, “The elusive Heisenberg limit in quantum-enhanced metrology,” Nat. Commun. 3, 1063 (2012).

Durkin, M.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, “Custom design of long chirped bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photonics Technol. Lett. 12, 498–500 (2000).
[Crossref]

Eckstein, A.

Englund, D.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Fabre, C.

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Fang, B.

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Demonstration of nondeterministic quantum logic operations using linear optical elements,” Phys. Rev. Lett. 88, 257902 (2002).
[Crossref] [PubMed]

Gerrits, T.

P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41, 5074–5077 (2016).
[Crossref] [PubMed]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon. 7, 102–112 (2013).
[Crossref]

Grice, W. P.

Grudinin, A.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, “Custom design of long chirped bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photonics Technol. Lett. 12, 498–500 (2000).
[Crossref]

Guta, M.

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, “The elusive Heisenberg limit in quantum-enhanced metrology,” Nat. Commun. 3, 1063 (2012).

Hiemstra, T.

Horansky, R. D.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Humphreys, P. C.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

Ibsen, M.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, “Custom design of long chirped bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photonics Technol. Lett. 12, 498–500 (2000).
[Crossref]

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Demonstration of nondeterministic quantum logic operations using linear optical elements,” Phys. Rev. Lett. 88, 257902 (2002).
[Crossref] [PubMed]

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon. 7, 102–112 (2013).
[Crossref]

Jin, X.-M.

Kim, Y.-H.

Kolenderski, P.

Kolodynski, J.

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, “The elusive Heisenberg limit in quantum-enhanced metrology,” Nat. Commun. 3, 1063 (2012).

Kolthammer, W. S.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

Kuo, P. S.

Lamine, B.

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Laming, R.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, “Custom design of long chirped bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photonics Technol. Lett. 12, 498–500 (2000).
[Crossref]

Lancis, J.

V. Torres-Company, J. Lancis, and P. Andrés, “Space–time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

Lee, C.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Liscidini, M.

Lita, A. E.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Lorenz, V. O.

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Marsili, F.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Mirin, R. P.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Mosley, P. J.

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Muriel, M. A.

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quant. Electron. 36, 517–526 (2000).
[Crossref]

M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24, 1–3 (1999).
[Crossref]

Nam, S. W.

P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41, 5074–5077 (2016).
[Crossref] [PubMed]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Nunn, J.

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Quantum key distribution with multi-mode time-frequency entangled photons,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

Okamoto, M.

H. Sasada and M. Okamoto, “Transverse-mode beam splitter of a light beam and its application to quantum cryptography,” Phys. Rev. A 68, 012323 (2003).
[Crossref]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Demonstration of nondeterministic quantum logic operations using linear optical elements,” Phys. Rev. Lett. 88, 257902 (2002).
[Crossref] [PubMed]

Poem, E.

Radzewicz, C.

Raymer, M. G.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Reddy, D. V.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Restelli, A.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Sasada, H.

H. Sasada and M. Okamoto, “Transverse-mode beam splitter of a light beam and its application to quantum cryptography,” Phys. Rev. A 68, 012323 (2003).
[Crossref]

Shapiro, J. H.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Shaw, M.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Silberhorn, C.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Sipe, J. E.

Smith, B. J.

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Quantum key distribution with multi-mode time-frequency entangled photons,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Söller, C.

Tisa, S.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensor. Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Tong, Y. C.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

Torres-Company, V.

V. Torres-Company, J. Lancis, and P. Andrés, “Space–time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

Tosi, A.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensor. Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Treps, N.

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Tsang, H. K.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Verma, V. B.

P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41, 5074–5077 (2016).
[Crossref] [PubMed]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Walmsley, I. A.

E. Poem, T. Hiemstra, A. Eckstein, X.-M. Jin, and I. A. Walmsley, “Free-space spectro-temporal and spatio-temporal conversion for pulsed light,” Opt. Lett. 41, 4328–4331 (2016).
[Crossref] [PubMed]

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Quantum key distribution with multi-mode time-frequency entangled photons,” Opt. Express 21, 15959–15973 (2013).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Wang, L.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Wasilewski, W.

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

W. Wasilewski, P. Wasylczyk, P. Kolenderski, K. Banaszek, and C. Radzewicz, “Joint spectrum of photon pairs measured by coincidence Fourier spectroscopy,” Opt. Lett. 31, 1130–1132 (2006).
[Crossref] [PubMed]

Wong, F. N. C.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Wornell, G.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Wright, L. J.

Zappa, F.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensor. Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Zervas, M.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, “Custom design of long chirped bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photonics Technol. Lett. 12, 498–500 (2000).
[Crossref]

Zhang, L.

Zhang, Z.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Zhong, T.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Zhou, H.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Electron. Lett. (1)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).
[Crossref]

IEEE J. Quant. Electron. (1)

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quant. Electron. 36, 517–526 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, “Custom design of long chirped bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photonics Technol. Lett. 12, 498–500 (2000).
[Crossref]

Laser Photon. Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[Crossref]

Nat. Commun. (1)

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, “The elusive Heisenberg limit in quantum-enhanced metrology,” Nat. Commun. 3, 1063 (2012).

Nature Photon. (2)

LIGO collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photon. 7, 613–619 (2013).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon. 7, 102–112 (2013).
[Crossref]

New J. Phys. (1)

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. Shaw, Z. Zhang, L. Wang, D. Englund, G. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Optica (1)

Phys. Rev. A (1)

H. Sasada and M. Okamoto, “Transverse-mode beam splitter of a light beam and its application to quantum cryptography,” Phys. Rev. A 68, 012323 (2003).
[Crossref]

Phys. Rev. Lett. (4)

P. C. Humphreys, W. S. Kolthammer, J. Nunn, M. Barbieri, A. Datta, and I. A. Walmsley, “Continuous-variable quantum computing in optical time-frequency modes using quantum memories,” Phys. Rev. Lett. 113, 130502 (2014).
[Crossref] [PubMed]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Demonstration of nondeterministic quantum logic operations using linear optical elements,” Phys. Rev. Lett. 88, 257902 (2002).
[Crossref] [PubMed]

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Prog. Opt. (1)

V. Torres-Company, J. Lancis, and P. Andrés, “Space–time analogies in optics,” Prog. Opt. 56, 1–80 (2011).
[Crossref]

Rev. Mod. Phys. (1)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Sensor. Actuat. A: Phys. (1)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensor. Actuat. A: Phys. 140, 103–112 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup. Ti:Sapph, Ti:sapphire femtosecond oscillator; BBO (KDP), beta barium borate (potassium dihydrogen phosphate) crystal; (P)BS, (polarizing) beam splitter; PD, fast photodiode; TDC, time-to-digital converter; DM, dichroic mirror; IF1(2), bandpass filters; PMZ, polarization Mach-Zehnder interferometer; TRSPS1(2), time-resolved single photon spectrometer; SPCM, single photon counting module. For calibration the TRSPSs were fitted with linear PDs. See text for details.
Fig. 2
Fig. 2 (a) Spectral response functions of the three TRSPS setups. Response is close to zero outside of the 825 − 835 nm reflection window of the CFBGs. CFBG1 (dotted, blue) and CFBG2 (dashed, green) with PerkinElmer (slow) SPCMs. CFBG1 with MPD (fast, less efficient) SPCM (solid red, right scale). The peak at 824.6 nm is caused by back-reflection from a fiber splice. This feature is present in the dotted blue dataset as well but is not resolved by the slower SPCM. (b) Wavelength-dependent delays introduced by the CFBGs, obtained using bright laser pulses for TRSPS1 (blue, +) and 2 (red, ×) with linear fits (solid lines). INSET: Example of narrowband filtered spectrum used for calibration.
Fig. 3
Fig. 3 (a) Experimental heralded single-photon spectrum in a double-pulse mode. The number of counts is adjusted to account for nonuniform efficiency of the TRSPS whilst conserving the total number of counts. The red curve shows the expected spectrum given the underlying single-photon spectrum and the time delay, with visibility and phase chosen freely in order to give the best fit. To obtain the red curve, a Gaussian fit to the underlying spectrum was obtained from a separate measurement of the photon spectrum; this was modulated by a sinusoidal signal with known period given by the time delay. The visibility of 24% is primarily reduced by phase instability in the interferometer over the 300 s acquisition time. (b) Measured JSI of SPDC photon pair source. Coincidence counts per bin, adjusted to account for the spectral variation of TRSPS efficiency whilst conserving total count number.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( λ ) = N CC ( D λ δ τ ) / η ( λ ) ,

Metrics