Abstract

The inverse Faraday effect (IFE) is an opto-magnetic phenomenon that produces static magnetic fields in a wide range of materials during illumination with circularly polarized light. This study analyzes non-magnetic gold (Au) metal nanostructures, providing insight into plasmonic enhancement of the magnetic and optoelectronic phenomena associated with the IFE. We report a simple numerical approach in combination with full-wave optical simulations (finite-difference time-domain method) for tracking the optically-induced motion of electrons inside plasmonic nanostructures that gives rise to the IFE. In addition to static magnetic fields, a circulating drift current is observed, where the direction of current is the same as the chirality of the circularly polarized light. Our results indicate a significant enhancement of this drift current by ~100 times in Au nanoparticles due to larger optical field gradients in comparison with bulk Au films. We also report on the size, geometry, and spectral dependence of the induced drift currents and static magnetic fields, which we predict can exceed 1×10−3 T under 1015 W m−2 optical intensity for spherical Au nanoparticles. Our results inform the development of new classes of magneto-optic and optoelectronic behavior that can be obtained via direct manipulation of electron dynamics by the optical fields inside metals.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites

Yu Gu and Konstantin G. Kornev
J. Opt. Soc. Am. B 27(11) 2165-2173 (2010)

Plasmon mediated inverse Faraday effect in a graphene–dielectric–metal structure

Igor V. Bychkov, Dmitry A. Kuzmin, Valentine A. Tolkachev, Pavel S. Plaksin, and Vladimir G. Shavrov
Opt. Lett. 43(1) 26-29 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
    [Crossref] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  3. M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).
  4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  5. M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics. Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
    [Crossref] [PubMed]
  6. B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
    [Crossref]
  7. R. Hertel and M. Fahnle, “Macroscopic drift current in the inverse Faraday effect,” Phys. Rev. B 91(2), 020411 (2015).
    [Crossref]
  8. I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
    [Crossref]
  9. L. P. Pitaevski, “Electric forces in a transparant dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).
  10. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
    [Crossref] [PubMed]
  11. S. M. Hamidi, M. Razavinia, and M. M. Tehranchi, “Enhanced optically induced magnetization due to inverse Faraday effect in plasmonic nanostructures,” Opt. Commun. 338, 240–245 (2015).
    [Crossref]
  12. B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
    [Crossref] [PubMed]
  13. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [Crossref] [PubMed]
  14. Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B 27(11), 2165–2173 (2010).
    [Crossref]
  15. A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
    [Crossref]
  16. Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
    [Crossref]
  17. V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200(9), 092003 (2010).
    [Crossref]
  18. E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
    [Crossref]
  19. I. Mayergoyz, Z. Y. Zhang, P. McAvoy, D. Bowen, and C. Krafft, “Application of Circularly Polarized Plasmon Resonance Modes to All-Optical Magnetic Recording,” IEEE Trans. Magn. 44(11), 3372–3375 (2008).
    [Crossref]
  20. K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” J. Appl. Phys. 109(7), 07B735 (2011).
    [Crossref]
  21. M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
    [Crossref] [PubMed]
  22. F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
    [Crossref] [PubMed]
  23. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).
  24. N. I. Zheludev, P. J. Bennett, H. Loh, S. V. Popov, I. R. Shatwell, Y. P. Svirko, V. E. Gusev, V. F. Kamalov, and E. V. Slobodchikov, “Cubic optical nonlinearity of free electrons in bulk gold,” Opt. Lett. 20(12), 1368–1370 (1995).
    [Crossref] [PubMed]
  25. R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303(1), L1–L4 (2006).
    [Crossref]
  26. H. L. Zhang, Y. Z. Wang, and X. J. Chen, “A simple explanation for the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 321(24), L73–L74 (2009).
    [Crossref]
  27. A. Nadarajah and M. T. Sheldon, “matlab_code,” http://dx.doi.org/10.6084/m9.figshare.5028647 .
  28. “Charge and current measurements,” Lumerical Solutions, Inc., https://kb.lumerical.com/en/index.html?layout_analysis_charge_current.html .
  29. N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
    [Crossref]
  30. A. D. Rakić, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  31. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [Crossref] [PubMed]
  32. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]

2015 (2)

R. Hertel and M. Fahnle, “Macroscopic drift current in the inverse Faraday effect,” Phys. Rev. B 91(2), 020411 (2015).
[Crossref]

S. M. Hamidi, M. Razavinia, and M. M. Tehranchi, “Enhanced optically induced magnetization due to inverse Faraday effect in plasmonic nanostructures,” Opt. Commun. 338, 240–245 (2015).
[Crossref]

2014 (2)

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics. Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

2013 (2)

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

2012 (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

2011 (2)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” J. Appl. Phys. 109(7), 07B735 (2011).
[Crossref]

2010 (4)

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200(9), 092003 (2010).
[Crossref]

E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[Crossref]

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B 27(11), 2165–2173 (2010).
[Crossref]

2009 (1)

H. L. Zhang, Y. Z. Wang, and X. J. Chen, “A simple explanation for the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 321(24), L73–L74 (2009).
[Crossref]

2008 (2)

I. Mayergoyz, Z. Y. Zhang, P. McAvoy, D. Bowen, and C. Krafft, “Application of Circularly Polarized Plasmon Resonance Modes to All-Optical Magnetic Recording,” IEEE Trans. Magn. 44(11), 3372–3375 (2008).
[Crossref]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

2007 (2)

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

2006 (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303(1), L1–L4 (2006).
[Crossref]

2005 (2)

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
[Crossref]

2002 (1)

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

1999 (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1998 (1)

1997 (1)

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

1995 (1)

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

1961 (1)

L. P. Pitaevski, “Electric forces in a transparant dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Arad, B.

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

Armelles, G.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Ashizawa, Y.

K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” J. Appl. Phys. 109(7), 07B735 (2011).
[Crossref]

Atwater, H. A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics. Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Aussenegg, F. R.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Balbashov, A. M.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Belotelov, V. I.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200(9), 092003 (2010).
[Crossref]

Bennett, P. J.

Bezares, F. J.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Bezus, E. A.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200(9), 092003 (2010).
[Crossref]

Bonanni, V.

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Bowen, D.

I. Mayergoyz, Z. Y. Zhang, P. McAvoy, D. Bowen, and C. Krafft, “Application of Circularly Polarized Plasmon Resonance Modes to All-Optical Magnetic Recording,” IEEE Trans. Magn. 44(11), 3372–3375 (2008).
[Crossref]

Brown, A. M.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics. Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Caldwell, J. D.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Campo, G.

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Caneschi, A.

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Chen, X. J.

H. L. Zhang, Y. Z. Wang, and X. J. Chen, “A simple explanation for the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 321(24), L73–L74 (2009).
[Crossref]

Christopher, P.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Davis, C. C.

I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
[Crossref]

Ditlbacher, H.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Djurisic, A. B.

Domínguez-Juárez, J. L.

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

Doskolovich, L. L.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200(9), 092003 (2010).
[Crossref]

Elazar, J. M.

Eliezer, S.

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

Elliott, J.

I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
[Crossref]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Fahnle, M.

R. Hertel and M. Fahnle, “Macroscopic drift current in the inverse Faraday effect,” Phys. Rev. B 91(2), 020411 (2015).
[Crossref]

Felidj, N.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Fernández, Cde. J.

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

García-Martín, A.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Gatteschi, D.

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

González-Díaz, J. B.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Gu, Y.

Gusev, V. E.

Hamidi, S. M.

S. M. Hamidi, M. Razavinia, and M. M. Tehranchi, “Enhanced optically induced magnetization due to inverse Faraday effect in plasmonic nanostructures,” Opt. Commun. 338, 240–245 (2015).
[Crossref]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Henis, Z.

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

Hertel, R.

R. Hertel and M. Fahnle, “Macroscopic drift current in the inverse Faraday effect,” Phys. Rev. B 91(2), 020411 (2015).
[Crossref]

R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303(1), L1–L4 (2006).
[Crossref]

Horovitz, Y.

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

Ingram, D. B.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Itoh, A.

K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” J. Appl. Phys. 109(7), 07B735 (2011).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Kalish, A. N.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200(9), 092003 (2010).
[Crossref]

Kamalov, V. F.

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kimel, A. V.

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Kornev, K. G.

Krafft, C.

I. Mayergoyz, Z. Y. Zhang, P. McAvoy, D. Bowen, and C. Krafft, “Application of Circularly Polarized Plasmon Resonance Modes to All-Optical Magnetic Recording,” IEEE Trans. Magn. 44(11), 3372–3375 (2008).
[Crossref]

Krenn, J. R.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Lamprecht, B.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Lechuga, L. M.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Leitner, A.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Linic, S.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Loh, H.

Ludmirsky, A.

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Majewski, M. L.

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Mattei, G.

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Mayergoyz, I.

I. Mayergoyz, Z. Y. Zhang, P. McAvoy, D. Bowen, and C. Krafft, “Application of Circularly Polarized Plasmon Resonance Modes to All-Optical Magnetic Recording,” IEEE Trans. Magn. 44(11), 3372–3375 (2008).
[Crossref]

McAvoy, P.

I. Mayergoyz, Z. Y. Zhang, P. McAvoy, D. Bowen, and C. Krafft, “Application of Circularly Polarized Plasmon Resonance Modes to All-Optical Magnetic Recording,” IEEE Trans. Magn. 44(11), 3372–3375 (2008).
[Crossref]

Moocarme, M.

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

Moshe, E.

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

Nakagawa, K.

K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” J. Appl. Phys. 109(7), 07B735 (2011).
[Crossref]

Noginova, N.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Ögüt, E.

E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[Crossref]

Ohnuki, S.

K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” J. Appl. Phys. 109(7), 07B735 (2011).
[Crossref]

Pineider, F.

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Pisarev, R. V.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Pitaevski, L. P.

L. P. Pitaevski, “Electric forces in a transparant dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).

Polman, A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics. Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Popov, S. V.

Rakic, A. D.

Rasing, T.

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Razavinia, M.

S. M. Hamidi, M. Razavinia, and M. M. Tehranchi, “Enhanced optically induced magnetization due to inverse Faraday effect in plasmonic nanostructures,” Opt. Commun. 338, 240–245 (2015).
[Crossref]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Rono, V.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Salerno, M.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Sangregorio, C.

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Schaefer, D.

I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
[Crossref]

Schider, G.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Sendur, K.

E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[Crossref]

Sepúlveda, B.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Shatwell, I. R.

Sheldon, M. T.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics. Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Shpitalnik, R.

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

Slobodchikov, E. V.

Smolyaninov, I. I.

I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
[Crossref]

Smolyaninova, V. N.

I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
[Crossref]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Svirko, Y. P.

Tehranchi, M. M.

S. M. Hamidi, M. Razavinia, and M. M. Tehranchi, “Enhanced optically induced magnetization due to inverse Faraday effect in plasmonic nanostructures,” Opt. Commun. 338, 240–245 (2015).
[Crossref]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Tsukamoto, A.

K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” J. Appl. Phys. 109(7), 07B735 (2011).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Usachev, P. A.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

van de Groep, J.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics. Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Vuong, L. T.

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

Wang, Y. Z.

H. L. Zhang, Y. Z. Wang, and X. J. Chen, “A simple explanation for the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 321(24), L73–L74 (2009).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
[Crossref]

Zhang, H. L.

H. L. Zhang, Y. Z. Wang, and X. J. Chen, “A simple explanation for the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 321(24), L73–L74 (2009).
[Crossref]

Zhang, Z. Y.

I. Mayergoyz, Z. Y. Zhang, P. McAvoy, D. Bowen, and C. Krafft, “Application of Circularly Polarized Plasmon Resonance Modes to All-Optical Magnetic Recording,” IEEE Trans. Magn. 44(11), 3372–3375 (2008).
[Crossref]

Zheludev, N. I.

Zvezdin, A. K.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200(9), 092003 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

IEEE Trans. Magn. (1)

I. Mayergoyz, Z. Y. Zhang, P. McAvoy, D. Bowen, and C. Krafft, “Application of Circularly Polarized Plasmon Resonance Modes to All-Optical Magnetic Recording,” IEEE Trans. Magn. 44(11), 3372–3375 (2008).
[Crossref]

J. Appl. Phys. (1)

K. Nakagawa, Y. Ashizawa, S. Ohnuki, A. Itoh, and A. Tsukamoto, “Confined circularly polarized light generated by nano-size aperture for high density all-optical magnetic recording,” J. Appl. Phys. 109(7), 07B735 (2011).
[Crossref]

J. Magn. Magn. Mater. (2)

R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303(1), L1–L4 (2006).
[Crossref]

H. L. Zhang, Y. Z. Wang, and X. J. Chen, “A simple explanation for the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 321(24), L73–L74 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

J. Phys. Conf. Ser. (1)

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys. Conf. Ser. 200(9), 092003 (2010).
[Crossref]

Laser Photonics Rev. (1)

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

Nano Lett. (2)

M. Moocarme, J. L. Domínguez-Juárez, and L. T. Vuong, “Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids,” Nano Lett. 14(3), 1178–1183 (2014).
[Crossref] [PubMed]

F. Pineider, G. Campo, V. Bonanni, Cde. J. Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nature (1)

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15(11), 113061 (2013).
[Crossref]

Opt. Commun. (1)

S. M. Hamidi, M. Razavinia, and M. M. Tehranchi, “Enhanced optically induced magnetization due to inverse Faraday effect in plasmonic nanostructures,” Opt. Commun. 338, 240–245 (2015).
[Crossref]

Opt. Lett. (1)

Opto-Electron. Rev. (1)

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Phys. Rev. B (2)

R. Hertel and M. Fahnle, “Macroscopic drift current in the inverse Faraday effect,” Phys. Rev. B 91(2), 020411 (2015).
[Crossref]

I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B 71(3), 035425 (2005).
[Crossref]

Phys. Rev. Lett. (3)

Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, “Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas,” Phys. Rev. Lett. 78(9), 1707–1710 (1997).
[Crossref]

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Science (1)

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Nanophotonics. Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Sov. Phys. JETP (1)

L. P. Pitaevski, “Electric forces in a transparant dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).

Other (3)

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).

A. Nadarajah and M. T. Sheldon, “matlab_code,” http://dx.doi.org/10.6084/m9.figshare.5028647 .

“Charge and current measurements,” Lumerical Solutions, Inc., https://kb.lumerical.com/en/index.html?layout_analysis_charge_current.html .

Supplementary Material (1)

NameDescription
» Code 1       Matlab Code

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) An Au spherical nanoparticle under circularly polarized illumination (green arrow) will generate a static magnetic field (red arrow) along the optical axis, as well as circulating drift currents (blue arrow) due to the IFE. (b) A schematic view in cross section shows solenoid-like paths for each electron (red dotted curves) due to the forces experienced during the optical cycle. This nearly harmonic displacement motion of all of the electrons is the primary mechanism producing the static magnetic field. However, optical field gradients inside the metal entail that electron trajectories start and end at slightly different positions during one optical cycle, producing a net drift current (small blue arrows, not to scale). The drift current circulates through the entire structure with the same chirality as the optical source, providing a secondary contribution to the total static magnetization.
Fig. 2
Fig. 2 (a) Schematic showing the calculated trajectory of a differential volume element of charges inside the structure due to the influence of the time-dependent optical forces. At some initial time, t = t o , and position, r = r o , the drift velocity, v ( r o , t o ) , between time steps, Δ t , is determined by the instantaneous current density, J ( r o , t o ) . The calculation is iterated for the duration of the optical cycle to determine any difference in the start and end position, indicating a net current density, J n e t , (b) Drift current density as a function of the number of time steps, N , for various light intensities. The current densities were computed near the exterior of 100 nm diameter Au nanoparticle with an incident wavelength of 517 nm.
Fig. 3
Fig. 3 Electric field (black trace) and circulating drift current density as a function of the distance from the center of a circularly polarized Gaussian beam spot on an Au film. The current density was computed at a wavelength of ~450 nm with an intensity of 1 × 1015 W m−2.
Fig. 4
Fig. 4 (a) Cross-section view of the drift current circulating throughout the particle. Cross-section view of the magnetic field for a (b) 100 nm diameter Au nanoparticle, the induced field which is due only to the solenoid-like displacement motion of each electron at the optical frequency. Plots (a) and (b) depict an intensity of 1015 W m−2 at a wavelength of ~517 nm for an anti-clockwise circularly polarized excitation.
Fig. 5
Fig. 5 Circulating drift current density as a function of (a) incident light intensity, (b) wavelength (blue trace), and (c) distance from the center for a 100 nm diameter Au nanoparticle. (b) Induced magnetic moment as a function of wavelength (red trace). The data in (b) and (c) were computed at a wavelength of 517 nm and intensity of 1015 W m−2.
Fig. 6
Fig. 6 (a-c) Electrical field profile as a function of distance from the center of (a) 100 nm, (b) 10 nm, and (c) 5 nm-diameter Au nanoparticles. The incident optical field strength is 1 V m−1. There are four distinct regimes moving from the center through the exterior of the particles: (1) A slowly increasing field inside the particles (more apparent in panel (a)) (2) a drop in the field a few nanometers inside the particle surface due to screening effects, (3) significant optical field enhancement at the surface of the particle (indicated with arrows), and (4) a steady decline of the field outside the particles within the surrounding dielectric. (d-f) Circulating drift current density as a function of distance from the center of Au nanoparticles for diameters of (d) 100 nm, (e) 10 nm, and (f) 5 nm. In (a-c & f) the insets display a magnified view near the particle exterior. (g) Current density (green trace) and optical field enhancement (red trace) near the exterior of the nanoparticles. The current densities were computed at an incident light intensity of 1015 W m−2.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( n + δ n ) t + ( n v + n δ v + δ n v + δ n δ v ) = 0
t n + ( n v + δ n δ v ) = 0
M = e ε o ω p 2 4 m ω 3 ( i E o × E o )
J ϕ ( r ) = n e v ϕ e ϕ = ± n e 3 E 2 m 2 ω 3 ( d E d r ) e ϕ
D = ε m E
D = ε o E + ε c E = ε o E + i σ E ω
J = i ω ( ε m ε o ) E
r 1 = r o + v ( r o , t o ) Δ t t 1 = t o + Δ t J 1 = J ( r 1 , t 1 )
t f = t o + N Δ t r f = r o + v ( r o , t o ) Δ t + + v ( r f 1 , t f 1 ) Δ t J f = J ( r f , t f )
J n e t = J ( r f , t f ) J ( r o , t o ) = e n A u ( r f r o t f t o ) = e n A u ( r f r o N Δ t )
J n e t = e n A u ( r f r o ) f

Metrics