Abstract

We describe a theoretical model to analyze temperature effects on the Kretschmann surface plasmon resonance (SPR) sensor, and describe a new double-incident angle technique to simultaneously measure changes in refractive index (RI) and temperature. The method uses the observation that output signals obtained from two different incident angles each have a linear dependence on RI and temperature, and are independent. A proof-of-concept experiment using different NaCl concentration solutions as analytes demonstrates the ability of the technique. The optical design is as simple and robust as conventional SPR detection, but provides a way to discriminate between RI-induced and temperature-induced SPR changes. This technique facilitates a way for traditional SPR sensors to detect RI in different temperature environments, and may lead to better design and fabrication of SPR sensors against temperature variation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF

Xianchao Yang, Ying Lu, Baolin Liu, and Jianquan Yao
Appl. Opt. 56(15) 4369-4374 (2017)

Bimetal coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity

Tan Tai Nguyen, Eun-Cheol Lee, and Heongkyu Ju
Opt. Express 22(5) 5590-5598 (2014)

Surface plasmon resonance-based highly sensitive optical touch sensor with a hybrid noise rejection scheme

Sarun Sumriddetchkajorn and Kosom Chaitavon
Appl. Opt. 45(1) 172-177 (2006)

References

  • View by:
  • |
  • |
  • |

  1. E. Helmerhorst, D. J. Chandler, M. Nussio, and C. D. Mamotte, “Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective,” Clin. Biochem. Rev. 33(4), 161–173 (2012).
    [PubMed]
  2. Q. H. Phan, Y. L. Lo, and C. L. Huang, “Surface plasmon resonance prism coupler for enhanced circular dichroism sensing,” Opt. Express 24(12), 12812–12824 (2016).
    [Crossref] [PubMed]
  3. S. K. Ozdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21(3), 805–814 (2003).
    [Crossref]
  4. A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, “A portable surface plasmon resonance (SPR) sensor system with temperature regulation,” Sensor. Actuat. Biol. Chem. 96(1), 253–260 (2003).
  5. J. B. Fiche, A. Buhot, R. Calemczuk, and T. Livache, “Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves,” Biophys. J. 92(3), 935–946 (2007).
    [Crossref] [PubMed]
  6. J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sensor. Actuat. B-Chem. (2016).
  7. F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 3567–3571 (2014).
  8. X. Y. Zhang and K. Y. Wang, “Double-incident angle technique for surface plasmon resonance measurements,” Opt. Commun. 351, 140–143 (2015).
    [Crossref]
  9. M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  10. H. P. Chiang, Y. C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
    [Crossref]
  11. H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate−temperature dependence of surface-enhanced raman scattering,” J. Phys. Chem. B 104(10), 2432 (2000).
    [Crossref]
  12. A. K. Sharma and B. D. Gupta, “Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor,” Appl. Opt. 45(1), 151–161 (2006).
    [Crossref] [PubMed]
  13. R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of cu, ag, and au,” Phys. Rev. B Condens. Matter 16(12), 5277–5284 (1977).
    [Crossref]
  14. T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96(2), 535–536 (1954).
    [Crossref]
  15. W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B Condens. Matter 13(12), 5316–5319 (1976).
    [Crossref]
  16. S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys., A Mater. Sci. Process. 51(4), 350–353 (1990).
    [Crossref]
  17. K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
    [Crossref]
  18. L. Wang, X. J. Liu, J. Hao, and L. Q. Chu, “Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films,” Sensor. Actuat. Biol. Chem. 215, 368–372 (2015).

2016 (1)

2015 (2)

L. Wang, X. J. Liu, J. Hao, and L. Q. Chu, “Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films,” Sensor. Actuat. Biol. Chem. 215, 368–372 (2015).

X. Y. Zhang and K. Y. Wang, “Double-incident angle technique for surface plasmon resonance measurements,” Opt. Commun. 351, 140–143 (2015).
[Crossref]

2014 (1)

2013 (1)

M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

2012 (1)

E. Helmerhorst, D. J. Chandler, M. Nussio, and C. D. Mamotte, “Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective,” Clin. Biochem. Rev. 33(4), 161–173 (2012).
[PubMed]

2007 (2)

J. B. Fiche, A. Buhot, R. Calemczuk, and T. Livache, “Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves,” Biophys. J. 92(3), 935–946 (2007).
[Crossref] [PubMed]

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

2006 (1)

2003 (3)

S. K. Ozdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21(3), 805–814 (2003).
[Crossref]

A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, “A portable surface plasmon resonance (SPR) sensor system with temperature regulation,” Sensor. Actuat. Biol. Chem. 96(1), 253–260 (2003).

H. P. Chiang, Y. C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[Crossref]

2000 (1)

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate−temperature dependence of surface-enhanced raman scattering,” J. Phys. Chem. B 104(10), 2432 (2000).
[Crossref]

1990 (1)

S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys., A Mater. Sci. Process. 51(4), 350–353 (1990).
[Crossref]

1977 (1)

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of cu, ag, and au,” Phys. Rev. B Condens. Matter 16(12), 5277–5284 (1977).
[Crossref]

1976 (1)

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B Condens. Matter 13(12), 5316–5319 (1976).
[Crossref]

1954 (1)

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96(2), 535–536 (1954).
[Crossref]

Alameh, K.

Bartholomew, D. U.

A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, “A portable surface plasmon resonance (SPR) sensor system with temperature regulation,” Sensor. Actuat. Biol. Chem. 96(1), 253–260 (2003).

Beach, R. T.

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of cu, ag, and au,” Phys. Rev. B Condens. Matter 16(12), 5277–5284 (1977).
[Crossref]

Buhot, A.

J. B. Fiche, A. Buhot, R. Calemczuk, and T. Livache, “Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves,” Biophys. J. 92(3), 935–946 (2007).
[Crossref] [PubMed]

Calemczuk, R.

J. B. Fiche, A. Buhot, R. Calemczuk, and T. Livache, “Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves,” Biophys. J. 92(3), 935–946 (2007).
[Crossref] [PubMed]

Chandler, D. J.

E. Helmerhorst, D. J. Chandler, M. Nussio, and C. D. Mamotte, “Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective,” Clin. Biochem. Rev. 33(4), 161–173 (2012).
[PubMed]

Chiang, H. P.

H. P. Chiang, Y. C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[Crossref]

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate−temperature dependence of surface-enhanced raman scattering,” J. Phys. Chem. B 104(10), 2432 (2000).
[Crossref]

Christy, R. W.

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of cu, ag, and au,” Phys. Rev. B Condens. Matter 16(12), 5277–5284 (1977).
[Crossref]

Chu, L. Q.

L. Wang, X. J. Liu, J. Hao, and L. Q. Chu, “Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films,” Sensor. Actuat. Biol. Chem. 215, 368–372 (2015).

Elkind, J. L.

A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, “A portable surface plasmon resonance (SPR) sensor system with temperature regulation,” Sensor. Actuat. Biol. Chem. 96(1), 253–260 (2003).

Fiche, J. B.

J. B. Fiche, A. Buhot, R. Calemczuk, and T. Livache, “Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves,” Biophys. J. 92(3), 935–946 (2007).
[Crossref] [PubMed]

Furlong, C. E.

A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, “A portable surface plasmon resonance (SPR) sensor system with temperature regulation,” Sensor. Actuat. Biol. Chem. 96(1), 253–260 (2003).

Gupta, B. D.

Hao, J.

L. Wang, X. J. Liu, J. Hao, and L. Q. Chu, “Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films,” Sensor. Actuat. Biol. Chem. 215, 368–372 (2015).

Helmerhorst, E.

E. Helmerhorst, D. J. Chandler, M. Nussio, and C. D. Mamotte, “Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective,” Clin. Biochem. Rev. 33(4), 161–173 (2012).
[PubMed]

Herminghaus, S.

S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys., A Mater. Sci. Process. 51(4), 350–353 (1990).
[Crossref]

Holstein, T.

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96(2), 535–536 (1954).
[Crossref]

Huang, C. L.

Kim, M. S.

M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Lawrence, W. E.

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B Condens. Matter 13(12), 5316–5319 (1976).
[Crossref]

Lee, J.

M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Leiderer, P.

S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys., A Mater. Sci. Process. 51(4), 350–353 (1990).
[Crossref]

Leung, P. T.

H. P. Chiang, Y. C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[Crossref]

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate−temperature dependence of surface-enhanced raman scattering,” J. Phys. Chem. B 104(10), 2432 (2000).
[Crossref]

Li, G.

Lin, K. Q.

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

Liu, X. J.

L. Wang, X. J. Liu, J. Hao, and L. Q. Chu, “Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films,” Sensor. Actuat. Biol. Chem. 215, 368–372 (2015).

Livache, T.

J. B. Fiche, A. Buhot, R. Calemczuk, and T. Livache, “Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves,” Biophys. J. 92(3), 935–946 (2007).
[Crossref] [PubMed]

Lo, Y. L.

Lu, Y. H.

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

Maier, S. A.

M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Mamotte, C. D.

E. Helmerhorst, D. J. Chandler, M. Nussio, and C. D. Mamotte, “Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective,” Clin. Biochem. Rev. 33(4), 161–173 (2012).
[PubMed]

Mcenery, K. R.

M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Michel, D.

Ming, H.

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

Naimushin, A. N.

A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, “A portable surface plasmon resonance (SPR) sensor system with temperature regulation,” Sensor. Actuat. Biol. Chem. 96(1), 253–260 (2003).

Nussio, M.

E. Helmerhorst, D. J. Chandler, M. Nussio, and C. D. Mamotte, “Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective,” Clin. Biochem. Rev. 33(4), 161–173 (2012).
[PubMed]

Ozdemir, S. K.

Özdemir, S. K.

M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Phan, Q. H.

Sharma, A. K.

Soelberg, S. D.

A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, “A portable surface plasmon resonance (SPR) sensor system with temperature regulation,” Sensor. Actuat. Biol. Chem. 96(1), 253–260 (2003).

Tame, M. S.

M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Tse, W. S.

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate−temperature dependence of surface-enhanced raman scattering,” J. Phys. Chem. B 104(10), 2432 (2000).
[Crossref]

Turhan-Sayan, G.

Wang, K. Y.

X. Y. Zhang and K. Y. Wang, “Double-incident angle technique for surface plasmon resonance measurements,” Opt. Commun. 351, 140–143 (2015).
[Crossref]

Wang, L.

L. Wang, X. J. Liu, J. Hao, and L. Q. Chu, “Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films,” Sensor. Actuat. Biol. Chem. 215, 368–372 (2015).

Wang, P.

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

Wang, Y. C.

H. P. Chiang, Y. C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[Crossref]

Wei, L. M.

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

Xiao, F.

Xu, A.

Zhang, D. G.

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

Zhang, X. Y.

X. Y. Zhang and K. Y. Wang, “Double-incident angle technique for surface plasmon resonance measurements,” Opt. Commun. 351, 140–143 (2015).
[Crossref]

Zheng, R. S.

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys., A Mater. Sci. Process. 51(4), 350–353 (1990).
[Crossref]

Biophys. J. (1)

J. B. Fiche, A. Buhot, R. Calemczuk, and T. Livache, “Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves,” Biophys. J. 92(3), 935–946 (2007).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24(11), 3081–3084 (2007).
[Crossref]

Clin. Biochem. Rev. (1)

E. Helmerhorst, D. J. Chandler, M. Nussio, and C. D. Mamotte, “Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective,” Clin. Biochem. Rev. 33(4), 161–173 (2012).
[PubMed]

J. Lightwave Technol. (2)

J. Phys. Chem. B (1)

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate−temperature dependence of surface-enhanced raman scattering,” J. Phys. Chem. B 104(10), 2432 (2000).
[Crossref]

Nat. Phys. (1)

M. S. Tame, K. R. Mcenery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Opt. Commun. (1)

X. Y. Zhang and K. Y. Wang, “Double-incident angle technique for surface plasmon resonance measurements,” Opt. Commun. 351, 140–143 (2015).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96(2), 535–536 (1954).
[Crossref]

Phys. Rev. B Condens. Matter (2)

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B Condens. Matter 13(12), 5316–5319 (1976).
[Crossref]

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of cu, ag, and au,” Phys. Rev. B Condens. Matter 16(12), 5277–5284 (1977).
[Crossref]

Sensor. Actuat. Biol. Chem. (2)

A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, “A portable surface plasmon resonance (SPR) sensor system with temperature regulation,” Sensor. Actuat. Biol. Chem. 96(1), 253–260 (2003).

L. Wang, X. J. Liu, J. Hao, and L. Q. Chu, “Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films,” Sensor. Actuat. Biol. Chem. 215, 368–372 (2015).

Thin Solid Films (1)

H. P. Chiang, Y. C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[Crossref]

Other (1)

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sensor. Actuat. B-Chem. (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of an SPR sensor in the Kretschmann configuration.

Fig. 2
Fig. 2

Double incident angle signals manifest as shifting of the resonance curve.

Fig. 3
Fig. 3

The SPR reflected intensity signal shifts versus temperature and RI for the two incident angles.

Fig. 4
Fig. 4

SPR reflected signal shifts versus RI for 280K and 300K.

Fig. 5
Fig. 5

SPR reflected signal shifts versus temperature for 1.3336 RIU and 1.33346 RIU.

Fig. 6
Fig. 6

Experimental arrangement.

Fig. 7
Fig. 7

Light reflectance signal versus RI and the corresponding linear fit lines.

Fig. 8
Fig. 8

Light reflectance signal versus temperature and the corresponding linear fit lines.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ( n r +j n i ) 2 =1 ω p 2 ω(ω+i ω c )
ω p (T)= ω p0 [1+ γ e (TT ) 0 ] 1/2
ω c = ω cp (T)+ ω ce (T)
ω cp (T)= ω 0 [ 2 5 +4 ( T T D ) 5 0 T D /T z 4 dz e z 1 ]
ω ce (T)= 1 6 π 4 ΓΔ E F [ ( k B T) 2 + ( ω 4 π 2 ) 2 ]
d( T )= d 0 [1+(T T 0 )γ 1+μ 1μ ]
n(T)=n( T 0 )+(T T 0 ) dn dT
R= λ 2 ( λ 2 λ ig 2 )
2n(λ) dn dT (λ)=GR+H R 2
n(λ)= (1+ A 1 λ 2 λ 2 B 1 2 + A 2 λ 2 λ 2 B 2 2 + A 3 λ 2 λ 2 B 3 2 ) 1/2
R= | r 01 + r 12 exp(2i d 1 k z1 ) 1+ r 01 r 12 exp(2i d 1 k z1 ) | 2
r ij = k zi / ε i k zj / ε j k zi / ε i + k zj / ε j
k zi = 2π λ ε i ε 0 (sinθ) 2
( Δ S 1 Δ S 2 )=( m n1 m T1 m n2 m T2 )( Δn ΔT )=M( Δn ΔT )
( Δn ΔT )= M 1 ( Δ S 1 Δ S 2 )=( 0.0087 0.0172 604.2918 781.26 )( Δ S 1 Δ S 2 )
( Δ S 1 Δ S 1 Δ S 2 )=( m n1 m T1 m n( 12 ) m T( 12 ) )( Δn ΔT )
( Δn ΔT )= M 1 ( Δ S 1 Δ S 2 )=( 0.1366 0.2166 0.7084 0.9657 )( Δ S 1 Δ S 2 )

Metrics