Abstract

Physical unclonable functions (PUFs) serve as a hardware source of private information that cannot be duplicated and have applications in hardware integrity and information security. Here we demonstrate a photonic PUF based on ultrafast nonlinear optical interactions in a chaotic silicon micro-cavity. The device is probed with a spectrally-encoded ultrashort optical pulse, which nonlinearly interacts with the micro-cavity. This interaction produces a highly complex and unpredictable, yet deterministic, ultrafast response that can serve as a unique “fingerprint” of the cavity and as a source of private information for the device’s holder. Experimentally, we extract 17.1-kbit binary keys from six different photonic PUF designs and demonstrate the uniqueness and reproducibility of these keys. Furthermore, we experimentally test exact copies of the six photonic PUFs and demonstrate their unclonability due to unavoidable fabrication variations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Secure communications using nonlinear silicon photonic keys

Brian C. Grubel, Bryan T. Bosworth, Michael R. Kossey, A. Brinton Cooper, Mark A. Foster, and Amy C. Foster
Opt. Express 26(4) 4710-4722 (2018)

Quantum-secure authentication of a physical unclonable key

Sebastianus A. Goorden, Marcel Horstmann, Allard P. Mosk, Boris Škorić, and Pepijn W. H. Pinkse
Optica 1(6) 421-424 (2014)

Low-threshold and narrow linewidth diffusive random lasing in rhodamine 6G dye-doped polyurethane with dispersed ZrO2 nanoparticles

Benjamin R. Anderson, Ray Gunawidjaja, and Hergen Eilers
J. Opt. Soc. Am. B 31(10) 2363-2370 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet of Things: The road ahead,” Comput. Netw. 76, 146–164 (2014).
    [Crossref]
  2. R. Anderson, Security Engineering, 2nd ed. (Wiley Publishing, Inc., 2008).
  3. H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The PUF promise,” in Proc. 3rd Int. Conf. Trust Trust. Comput. (2010), pp. 290–297.
    [Crossref]
  4. R. Maes, Physically Unclonable Functions : Constructions, Properties and Applications (2012).
  5. R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
    [Crossref] [PubMed]
  6. U. Ruhrmair and J. Solter, “PUF modeling attacks: An introduction and overview,” Des. Autom. Test Eur. Conf. Exhib. (2014), pp. 1–6.
  7. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
    [Crossref] [PubMed]
  8. R. Pappu, “Physical One-Way Functions,” Massachusetts Institute of Technology (2001).
  9. U. Rührmair, C. Hilgers, and S. Urban, “Optical PUFs reloaded,” (Eprint.Iacr.Org, 2013).
  10. S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škorić, and P. W. H. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1(6), 421–424 (2014).
    [Crossref]
  11. S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books Publishing, LLC, 1994).
  12. O. Legrand and F. Mortessagne, “Wave chaos for the Helmholtz equation,” New Dir. Linear Acoust. Vib., 1–45 (2010).
  13. V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 1–15 (2002).
    [Crossref]
  14. B. C. Grubel, D. S. Vresilovic, B. T. Bosworth, M. Kossey, A. C. Foster, M. A. Foster, and A. B. Cooper, “Light transport through ultrafast chaotic micro-cavities for photonic physical unclonable functions,” in Conf. Inf. Sci. Syst. (CISS, 2017).
  15. R. Osgood, “Nonlinear silicon photonics,” SPIE Newsroom 4, 535–544 (2010).
  16. Photon Design, “OmniSim,” (2015).
  17. A. Taflove and S. Hagness, Computational Electodynamics The Finite-Difference Time-Domain Method (Artech House, Inc., 2005).
  18. X. Sanga, E. K. Tienb, and O. Boyraz, “Applications of two-photon absorption in silicon,” J. Optoelectron. Adv. Mater. 11, 15–25 (2009).
  19. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [Crossref] [PubMed]
  20. B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure authentication using the ultrafast response of chaotic silicon photonic microcavities,” in Conf. Lasers Electro-Optics (CLEO 2016), pp. 2–3.
  21. B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).
    [Crossref] [PubMed]
  22. L. Kocarev and S. Lian, Chaos-Based Cryptography: Theory, Algorithms and Applications (Springer, 2011).
  23. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [Crossref]
  24. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
    [Crossref]
  25. C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
    [Crossref]
  26. P. D. Fisher and R. Nesbitt, “The test of time. Clock-cycle estimation and test challenges for future microprocessors,” IEEE Circuits Devices Mag. 14(2), 37–44 (1998).
    [Crossref]
  27. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
    [Crossref] [PubMed]
  28. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
    [Crossref]
  29. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. ürgen Schmidhuber, “Modeling attacks on physical unclonable functions,” in Proc. 17th ACM Conf. Comput. Commun. Secur. - CCS (2010), pp. 237.
  30. A. Vijayakumar and S. Kundu, “A novel modeling attack resistant PUF design based on non-linear voltage transfer characteristics,” in Des. Autom. Test Eur. Conf. Exhib. (2015), pp. 653–658.
    [Crossref]
  31. C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Functions and Applications: A Tutorial,” Proc. IEEE 102(8), 1126–1141 (2014).
    [Crossref]

2015 (1)

2014 (4)

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Functions and Applications: A Tutorial,” Proc. IEEE 102(8), 1126–1141 (2014).
[Crossref]

S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škorić, and P. W. H. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1(6), 421–424 (2014).
[Crossref]

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet of Things: The road ahead,” Comput. Netw. 76, 146–164 (2014).
[Crossref]

2013 (1)

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

2010 (3)

R. Osgood, “Nonlinear silicon photonics,” SPIE Newsroom 4, 535–544 (2010).

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

2009 (1)

X. Sanga, E. K. Tienb, and O. Boyraz, “Applications of two-photon absorption in silicon,” J. Optoelectron. Adv. Mater. 11, 15–25 (2009).

2008 (1)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

2003 (1)

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[Crossref] [PubMed]

2002 (2)

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 1–15 (2002).
[Crossref]

1998 (1)

P. D. Fisher and R. Nesbitt, “The test of time. Clock-cycle estimation and test challenges for future microprocessors,” IEEE Circuits Devices Mag. 14(2), 37–44 (1998).
[Crossref]

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Assawaworrarit, S.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Baldycheva, A.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Bosworth, B. T.

Boyraz, O.

X. Sanga, E. K. Tienb, and O. Boyraz, “Applications of two-photon absorption in silicon,” J. Optoelectron. Adv. Mater. 11, 15–25 (2009).

Bradley, J.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Busch, H.

H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The PUF promise,” in Proc. 3rd Int. Conf. Trust Trust. Comput. (2010), pp. 290–297.
[Crossref]

Callahan, P. T.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Cao, Y.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Chin, S.

Coen-Porisini, A.

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet of Things: The road ahead,” Comput. Netw. 76, 146–164 (2014).
[Crossref]

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Coolbaugh, D. D.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Davis, P.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Devadas, S.

C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Functions and Applications: A Tutorial,” Proc. IEEE 102(8), 1126–1141 (2014).
[Crossref]

Doya, V.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 1–15 (2002).
[Crossref]

Fisher, P. D.

P. D. Fisher and R. Nesbitt, “The test of time. Clock-cycle estimation and test challenges for future microprocessors,” IEEE Circuits Devices Mag. 14(2), 37–44 (1998).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Gauthier, D. J.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[Crossref] [PubMed]

Gershenfeld, N.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Goorden, S. A.

Grieco, L. A.

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet of Things: The road ahead,” Comput. Netw. 76, 146–164 (2014).
[Crossref]

Gu, M.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Herder, C.

C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Functions and Applications: A Tutorial,” Proc. IEEE 102(8), 1126–1141 (2014).
[Crossref]

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Horstmann, M.

Horstmeyer, R.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Judkewitz, B.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Kaertner, F. X.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Katzenbeisser, S.

H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The PUF promise,” in Proc. 3rd Int. Conf. Trust Trust. Comput. (2010), pp. 290–297.
[Crossref]

Koushanfar, F.

C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Functions and Applications: A Tutorial,” Proc. IEEE 102(8), 1126–1141 (2014).
[Crossref]

Kundu, S.

A. Vijayakumar and S. Kundu, “A novel modeling attack resistant PUF design based on non-linear voltage transfer characteristics,” in Des. Autom. Test Eur. Conf. Exhib. (2015), pp. 653–658.
[Crossref]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Leake, G.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Legrand, O.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 1–15 (2002).
[Crossref]

O. Legrand and F. Mortessagne, “Wave chaos for the Helmholtz equation,” New Dir. Linear Acoust. Vib., 1–45 (2010).

Levy, J. S.

Li, N.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Li, X.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Lipson, M.

Magden, E. S.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Miniatura, C.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 1–15 (2002).
[Crossref]

Moresco, M.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Mortessagne, F.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 1–15 (2002).
[Crossref]

O. Legrand and F. Mortessagne, “Wave chaos for the Helmholtz equation,” New Dir. Linear Acoust. Vib., 1–45 (2010).

Mosk, A. P.

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Neifeld, M. A.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[Crossref] [PubMed]

Nesbitt, R.

P. D. Fisher and R. Nesbitt, “The test of time. Clock-cycle estimation and test challenges for future microprocessors,” IEEE Circuits Devices Mag. 14(2), 37–44 (1998).
[Crossref]

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Osgood, R.

R. Osgood, “Nonlinear silicon photonics,” SPIE Newsroom 4, 535–544 (2010).

Pappu, R.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Peng, M. Y.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Pinkse, P. W. H.

Poitras, C. B.

Purnawirman, P.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Recht, B.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Rizzardi, A.

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet of Things: The road ahead,” Comput. Netw. 76, 146–164 (2014).
[Crossref]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Salem, R.

Sander, M. Y.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Sanga, X.

X. Sanga, E. K. Tienb, and O. Boyraz, “Applications of two-photon absorption in silicon,” J. Optoelectron. Adv. Mater. 11, 15–25 (2009).

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Shtyrkova, K.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Sicari, S.

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet of Things: The road ahead,” Comput. Netw. 76, 146–164 (2014).
[Crossref]

Sion, R.

H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The PUF promise,” in Proc. 3rd Int. Conf. Trust Trust. Comput. (2010), pp. 290–297.
[Crossref]

Škoric, B.

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Sorace-Agaskar, C. M.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Sotáková, M.

H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The PUF promise,” in Proc. 3rd Int. Conf. Trust Trust. Comput. (2010), pp. 290–297.
[Crossref]

Stenner, M. D.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[Crossref] [PubMed]

Stroud, J. R.

Taylor, J.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Tienb, E. K.

X. Sanga, E. K. Tienb, and O. Boyraz, “Applications of two-photon absorption in silicon,” J. Optoelectron. Adv. Mater. 11, 15–25 (2009).

Tran, D. N.

Tran, T. D.

Turner-Foster, A. C.

Uchida, A.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Vellekoop, I. M.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Vijayakumar, A.

A. Vijayakumar and S. Kundu, “A novel modeling attack resistant PUF design based on non-linear voltage transfer characteristics,” in Des. Autom. Test Eur. Conf. Exhib. (2015), pp. 653–658.
[Crossref]

Watts, M. R.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

Yang, C.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Yoshimura, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Yu, M.-D.

C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Functions and Applications: A Tutorial,” Proc. IEEE 102(8), 1126–1141 (2014).
[Crossref]

Comput. Netw. (1)

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet of Things: The road ahead,” Comput. Netw. 76, 146–164 (2014).
[Crossref]

IEEE Circuits Devices Mag. (1)

P. D. Fisher and R. Nesbitt, “The test of time. Clock-cycle estimation and test challenges for future microprocessors,” IEEE Circuits Devices Mag. 14(2), 37–44 (1998).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

X. Sanga, E. K. Tienb, and O. Boyraz, “Applications of two-photon absorption in silicon,” J. Optoelectron. Adv. Mater. 11, 15–25 (2009).

Light Sci. Appl. (1)

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Nat. Photonics (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Nature (1)

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Optica (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(5), 1–15 (2002).
[Crossref]

Proc. IEEE (1)

C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Functions and Applications: A Tutorial,” Proc. IEEE 102(8), 1126–1141 (2014).
[Crossref]

Sci. Rep. (1)

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Science (1)

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

SPIE Newsroom (1)

R. Osgood, “Nonlinear silicon photonics,” SPIE Newsroom 4, 535–544 (2010).

Other (16)

Photon Design, “OmniSim,” (2015).

A. Taflove and S. Hagness, Computational Electodynamics The Finite-Difference Time-Domain Method (Artech House, Inc., 2005).

B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure authentication using the ultrafast response of chaotic silicon photonic microcavities,” in Conf. Lasers Electro-Optics (CLEO 2016), pp. 2–3.

B. C. Grubel, D. S. Vresilovic, B. T. Bosworth, M. Kossey, A. C. Foster, M. A. Foster, and A. B. Cooper, “Light transport through ultrafast chaotic micro-cavities for photonic physical unclonable functions,” in Conf. Inf. Sci. Syst. (CISS, 2017).

S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books Publishing, LLC, 1994).

O. Legrand and F. Mortessagne, “Wave chaos for the Helmholtz equation,” New Dir. Linear Acoust. Vib., 1–45 (2010).

R. Pappu, “Physical One-Way Functions,” Massachusetts Institute of Technology (2001).

U. Rührmair, C. Hilgers, and S. Urban, “Optical PUFs reloaded,” (Eprint.Iacr.Org, 2013).

U. Ruhrmair and J. Solter, “PUF modeling attacks: An introduction and overview,” Des. Autom. Test Eur. Conf. Exhib. (2014), pp. 1–6.

R. Anderson, Security Engineering, 2nd ed. (Wiley Publishing, Inc., 2008).

H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The PUF promise,” in Proc. 3rd Int. Conf. Trust Trust. Comput. (2010), pp. 290–297.
[Crossref]

R. Maes, Physically Unclonable Functions : Constructions, Properties and Applications (2012).

L. Kocarev and S. Lian, Chaos-Based Cryptography: Theory, Algorithms and Applications (Springer, 2011).

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kaertner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO 2015 (2015), paper SM2I.5.
[Crossref]

U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. ürgen Schmidhuber, “Modeling attacks on physical unclonable functions,” in Proc. 17th ACM Conf. Comput. Commun. Secur. - CCS (2010), pp. 237.

A. Vijayakumar and S. Kundu, “A novel modeling attack resistant PUF design based on non-linear voltage transfer characteristics,” in Des. Autom. Test Eur. Conf. Exhib. (2015), pp. 653–658.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Desired properties for the performance of an ideal PUF.
Fig. 2
Fig. 2 Photonic PUF design and simulation. (a) Scanning electron microscope (SEM) image of an example cavity. (b) Photon lifetime and transmission for a range of cavity diameters simulated with FDTD averaged over different chamfer positions and sizes. (c) A baseline geometry was simulated via FETD with an input Gaussian envelope pulse of 100-fs FWHM at 1550 nm. Simulations of designs varying only by chamfer angle were performed with output intensity envelopes compared to the baseline geometry via a cumulative difference first normalized to the total summation of the baseline power samples after removal of exponential decay. The increased slope of each curve shows separation as a function of geometrical deviation, which agrees with chaotic behavior. The inset image shows the cavity geometry and coordinate system.
Fig. 3
Fig. 3 SEM images of 6 prototype PUF designs with design parameters in parenthesis (diameter in microns, chamfer size as a factor of radius, and chamfer angle with respect to the unit circle).
Fig. 4
Fig. 4 (a) Normalized time-domain impulse response measured using cross-correlation with a sinc pulse (175 fs FWHM) for cavities 1-6 shown in order top to bottom. (b) Normalized spectral transfer-function magnitude for the same experiment.
Fig. 5
Fig. 5 Observed nonlinear effects in the photonic PUF. (a) Nonlinear power dependence of the output power spectral density of a prototype cavity in response to change in excitation pulse energies (28 pJ (yellow), 67 pJ (red), and 134 pJ (blue)) without changing input waveform or spectral content. (b) An input signal consisting of two 6.7-ps 50-pJ pulses centered at υ1 = 191.94 THz and υ2 = 192.43 THz are sent through the silicon cavity. Two new lightwaves at frequencies, υ3 = 191.57 THz and υ4 = 192.80 THz, as expected for a FWM process. (c) Spectral location of two probe measurements on sample device spectral transfer function. (d) Temporal responses of the two probes showing free carrier dispersion effects.
Fig. 6
Fig. 6 Authentication system and experimental setup. (a) An authentication system is constructed from an authenticator, a terminal, and a token. A token is authenticated through interrogation by issuing a challenge and comparing its measured response to a (previously measured) expected response. (b) Experimental setup of authentication system demonstration. Pulses from a MLL are amplified, temporally stretched, and encoded with a binary sequence from a pulse pattern generator (PPG). The pulses are compressed, amplified, and sent through the cavity. The responses are amplified, sent through a programmable spectral filter (WS) to extract a subset of information from each spectral response, and detected via photo-diode (PD). The outputs are converted into binary sequences through a post-processing algorithm.
Fig. 7
Fig. 7 Optical system elements (blue) and digital post-processing steps (black) to convert spectro-temporal responses into binary sequences.
Fig. 8
Fig. 8 Experimental authentication results. (a) The normalized FHD distributions and histograms for each design computed against the CRL for design 2 for a two LSB operating condition at a resampling of three bits post-ADC collection. The distribution representing an authentication attempt after 48 hours is also shown. (Design 1 results hidden by other distributions on the rejected side). (b) Normalized FHD distributions computed for each design against the CRL of every other design at the same operating conditions as Fig. 8(a). Design clone distribution shown in same color with circle marker. Authentication results after 48 hours shown for design 1 and 2. Error bars represent ± 6 standard deviations.

Metrics