Abstract

Computer-generated holography enables efficient light pattern generation through phase-only wavefront modulation. While perfect patterning usually requires control over both phase and amplitude, iterative Fourier transform algorithms (IFTA) can achieve phase-only approximations which maximize light efficiency at the cost of uniformity. The phase being unconstrained in the output plane, it can vary abruptly in some regions leading to destructive interferences. Among such structures phase vortices are the most common. Here we demonstrate theoretically, numerically and experimentally, a novel approach for eliminating phase vortices by spatially filtering the phase input to the IFTA, combining it with phase-based complex amplitude control at the spatial light modulator (SLM) plane to generate smooth shapes. The experimental implementation is achieved performing complex amplitude modulation with a phase-only SLM. This proposed experimental scheme offers a continuous and centered field of excitation. Lastly, we characterize achievable trade-offs between pattern uniformity, diffraction efficiency, and axial confinement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of generalized phase contrast and computer generated holography for laser image projection

Darwin Palima and Jesper Glückstad
Opt. Express 16(8) 5338-5349 (2008)

Reduction of the recorded speckle noise in holographic 3D printer

Takeru Utsugi and Masahiro Yamaguchi
Opt. Express 21(1) 662-674 (2013)

GPC Light Shaper for speckle-free one- and two-photon contiguous pattern excitation

Andrew Bañas, Darwin Palima, Mark Villangca, Thomas Aabo, and Jesper Glückstad
Opt. Express 22(5) 5299-5311 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
    [Crossref]
  2. J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  3. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14, 4175–4181 (2006).
    [Crossref] [PubMed]
  4. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18, 17193–17200 (2010).
    [Crossref] [PubMed]
  5. P. Wang and R. Menon, “Three-dimensional lithography via digital holography,” in “Frontiers in Optics 2012/Laser Science XXVIII,” (Optical Society of America, 2012), p. FTu3A.4.
  6. J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
    [Crossref]
  7. A. Bègue, E. Papagiakoumou, B. Leshem, R. Conti, L. Enke, D. Oron, and V. Emiliani, “Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation,” Biomed. Opt. Express 4(12), 2869–2879 (2013).
    [Crossref]
  8. E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
    [Crossref] [PubMed]
  9. O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
    [Crossref] [PubMed]
  10. S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
    [Crossref]
  11. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
    [Crossref] [PubMed]
  12. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
    [Crossref]
  13. M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
    [Crossref] [PubMed]
  14. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  15. H. Aagedal, M. Schmid, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
    [Crossref]
  16. J. Nye and M. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
    [Crossref]
  17. L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17, 015604 (2015)
    [Crossref]
  18. R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016)
    [Crossref] [PubMed]
  19. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101 (2005)
    [Crossref]
  20. A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures,” Neurophotonics 2, 021007 (2015)
    [Crossref] [PubMed]
  21. D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
    [Crossref]
  22. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
    [Crossref] [PubMed]
  23. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16, 22039–22047 (2008).
    [Crossref] [PubMed]
  24. J. Glueckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
    [Crossref]
  25. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with highefficiency,” Opt. Express 16, 4479–4486 (2008).
    [Crossref] [PubMed]
  26. T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
    [Crossref]
  27. H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid gerchberg-saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89 pp. 105–108 (2016).
  28. A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
    [Crossref] [PubMed]
  29. R. Brauer, F. Wyrowsky, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 8, 572–578 (1991).
    [Crossref]
  30. V. Bagnoud and J. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett. 29, 295–297 (2004).
    [Crossref] [PubMed]
  31. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16, 2597–2603 (2008).
    [Crossref] [PubMed]
  32. A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
    [Crossref]
  33. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
    [Crossref] [PubMed]
  34. L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6, 66004 (2009)
    [Crossref]
  35. S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
    [Crossref] [PubMed]
  36. V. Canales and M. Cagigal, “Rician distribution to describe speckle statistics in adaptive optics,” Appl. Opt. 38(5), 766–771 (1999).
    [Crossref]
  37. J. Goodman, Speckle Phenomena in Optics (Roberts and Cie, 2006).
  38. E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
    [Crossref] [PubMed]

2016 (5)

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
[Crossref] [PubMed]

S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
[Crossref]

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016)
[Crossref] [PubMed]

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid gerchberg-saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89 pp. 105–108 (2016).

2015 (4)

A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures,” Neurophotonics 2, 021007 (2015)
[Crossref] [PubMed]

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17, 015604 (2015)
[Crossref]

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

2013 (1)

2012 (2)

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
[Crossref] [PubMed]

A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
[Crossref]

2011 (1)

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
[Crossref] [PubMed]

2010 (3)

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18, 17193–17200 (2010).
[Crossref] [PubMed]

M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
[Crossref] [PubMed]

2009 (2)

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[Crossref] [PubMed]

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6, 66004 (2009)
[Crossref]

2008 (5)

2007 (1)

2006 (1)

2005 (1)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101 (2005)
[Crossref]

2004 (1)

2002 (1)

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

2001 (1)

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

1999 (1)

1996 (2)

H. Aagedal, M. Schmid, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
[Crossref]

J. Glueckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]

1991 (1)

R. Brauer, F. Wyrowsky, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 8, 572–578 (1991).
[Crossref]

1974 (1)

J. Nye and M. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Aagedal, H.

H. Aagedal, M. Schmid, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
[Crossref]

Angulo, M. C.

M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
[Crossref] [PubMed]

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

Assayag, O.

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016)
[Crossref] [PubMed]

Bagnoud, V.

Begue, A.

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

Bègue, A.

Belyi, V.

A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
[Crossref]

Bernet, S.

Berry, M.

J. Nye and M. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
[Crossref]

Bonifazi, P.

S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
[Crossref]

Bovetti, S.

S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
[Crossref]

Brauer, R.

R. Brauer, F. Wyrowsky, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 8, 572–578 (1991).
[Crossref]

Bruneau, A. Y. B.

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

Bryngdahl, O.

R. Brauer, F. Wyrowsky, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 8, 572–578 (1991).
[Crossref]

Burger, L.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17, 015604 (2015)
[Crossref]

Burnham, D. R.

Cagigal, M.

Canales, V.

Canepari, M.

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

Chaigneau, E.

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

Charpak, S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Cheng, C.-J.

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

Chichkov, B. N.

Conti, R.

Curtis, J.

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

de Sars, V.

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016)
[Crossref] [PubMed]

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16, 22039–22047 (2008).
[Crossref] [PubMed]

Dearing, M.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Del Maschio, M.

S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
[Crossref]

DeMarco, B.

DeSars, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

DiGregorio, D. A.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Dudley, A.

A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
[Crossref]

Dufresne, E.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Emiliani, V.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
[Crossref] [PubMed]

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016)
[Crossref] [PubMed]

A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures,” Neurophotonics 2, 021007 (2015)
[Crossref] [PubMed]

A. Bègue, E. Papagiakoumou, B. Leshem, R. Conti, L. Enke, D. Oron, and V. Emiliani, “Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation,” Biomed. Opt. Express 4(12), 2869–2879 (2013).
[Crossref]

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
[Crossref] [PubMed]

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16, 22039–22047 (2008).
[Crossref] [PubMed]

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

Endo, Y.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Enke, L.

Farah, N.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6, 66004 (2009)
[Crossref]

Fellin, T.

S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
[Crossref]

Fidelin, K.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
[Crossref] [PubMed]

Forbes, A.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17, 015604 (2015)
[Crossref]

A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
[Crossref]

Foust, A.

A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures,” Neurophotonics 2, 021007 (2015)
[Crossref] [PubMed]

Gajowa, M. A.

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

Gaunt, A. L.

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
[Crossref] [PubMed]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Glueckstad, J.

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

J. Glueckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]

Golan, L.

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[Crossref] [PubMed]

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6, 66004 (2009)
[Crossref]

Goodman, J.

J. Goodman, Speckle Phenomena in Optics (Roberts and Cie, 2006).

Grier, D.

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Gui, J.

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

Guillon, M.

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016)
[Crossref] [PubMed]

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
[Crossref] [PubMed]

Hadzibabic, Z.

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
[Crossref] [PubMed]

Hasegawa, S.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Hayasaki, Y.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101 (2005)
[Crossref]

Hernandez, O.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
[Crossref] [PubMed]

Hinze, U.

Hirayama, R.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Hiyama, D.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Ianni, F.

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

Ito, T.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Jesacher, A.

Kakue, T.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Khilo, N.

A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
[Crossref]

Koch, J.

Koss, B.

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Leonardo, R. D.

Leshem, B.

Li, C.

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

Li, J.

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

Lin, Y.-C.

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

Litvin, I.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17, 015604 (2015)
[Crossref]

Liu, J.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid gerchberg-saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89 pp. 105–108 (2016).

Lou, Y.

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

Lutz, C.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Maurer, C.

McGloin, D.

Menon, R.

P. Wang and R. Menon, “Three-dimensional lithography via digital holography,” in “Frontiers in Optics 2012/Laser Science XXVIII,” (Optical Society of America, 2012), p. FTu3A.4.

Moretti, C.

S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
[Crossref]

Nagahama, Y.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Ngcobo, S.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17, 015604 (2015)
[Crossref]

Nishida, N.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101 (2005)
[Crossref]

Nye, J.

J. Nye and M. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
[Crossref]

Obata, K.

Oikawa, M.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Oron, D.

Otis, T. S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Papagiakoumou, E.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
[Crossref] [PubMed]

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures,” Neurophotonics 2, 021007 (2015)
[Crossref] [PubMed]

A. Bègue, E. Papagiakoumou, B. Leshem, R. Conti, L. Enke, D. Oron, and V. Emiliani, “Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation,” Biomed. Opt. Express 4(12), 2869–2879 (2013).
[Crossref]

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
[Crossref] [PubMed]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16, 22039–22047 (2008).
[Crossref] [PubMed]

Pasienski, M.

Reutsky, I.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6, 66004 (2009)
[Crossref]

Ritsch-Marte, M.

Ronzitti, E.

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

Ropot, P.

A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
[Crossref]

Rozsa, B.

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

Ruocco, G.

Sano, M.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Schmid, M.

H. Aagedal, M. Schmid, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
[Crossref]

Schwaighofer, A.

Sheets, S.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Shimobaba, T.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Shoham, S.

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[Crossref] [PubMed]

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6, 66004 (2009)
[Crossref]

Situ, G.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid gerchberg-saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89 pp. 105–108 (2016).

Soler-Llavina, G. J.

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

Song, Q.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid gerchberg-saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89 pp. 105–108 (2016).

Spalding, G.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Sugie, T.

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101 (2005)
[Crossref]

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101 (2005)
[Crossref]

Tanese, D.

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
[Crossref] [PubMed]

A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures,” Neurophotonics 2, 021007 (2015)
[Crossref] [PubMed]

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

Tang, C.-M.

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
[Crossref] [PubMed]

Teiwes, S.

H. Aagedal, M. Schmid, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
[Crossref]

Tu, H.-Y.

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

Vasilyeu, R.

A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
[Crossref]

Vélez-Fort, M.

M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
[Crossref] [PubMed]

Ventalon, C.

M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
[Crossref] [PubMed]

Wang, H.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid gerchberg-saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89 pp. 105–108 (2016).

Wang, P.

P. Wang and R. Menon, “Three-dimensional lithography via digital holography,” in “Frontiers in Optics 2012/Laser Science XXVIII,” (Optical Society of America, 2012), p. FTu3A.4.

Wen, Ju-Yung

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

Wyart, C.

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
[Crossref] [PubMed]

Wyrowski, F.

H. Aagedal, M. Schmid, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
[Crossref]

Wyrowsky, F.

R. Brauer, F. Wyrowsky, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 8, 572–578 (1991).
[Crossref]

Yang, S.

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
[Crossref] [PubMed]

Yue, W.

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid gerchberg-saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89 pp. 105–108 (2016).

Zahid, M.

M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
[Crossref] [PubMed]

Zampini, V.

A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures,” Neurophotonics 2, 021007 (2015)
[Crossref] [PubMed]

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

Zecevic, D.

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

Zeng, H.

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

Zucca, S.

S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
[Crossref]

Zuegel, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101 (2005)
[Crossref]

Biomed. Opt. Express (1)

Front. Cell. Neurosci. (2)

E. Chaigneau, E. Ronzitti, M. A. Gajowa, G. J. Soler-Llavina, D. Tanese, A. Y. B. Bruneau, E. Papagiakoumou, H. Zeng, and V. Emiliani, “Two-Photon Holographic Stimulation of ReaChR,” Front. Cell. Neurosci. 10, 234 (2016).
[Crossref] [PubMed]

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016)
[Crossref] [PubMed]

J. Micro. Nanolithogr. MEMS MOEMS (1)

J. Li, Y.-C. Lin, H.-Y. Tu, J. Gui, C. Li, Y. Lou, and C.-J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro. Nanolithogr. MEMS MOEMS 14, 041303 (2015).
[Crossref]

J. Mod. Opt. (1)

H. Aagedal, M. Schmid, S. Teiwes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt. 43, 1409–1421 (1996).
[Crossref]

J. Neural Eng. (2)

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6, 66004 (2009)
[Crossref]

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011)
[Crossref] [PubMed]

J. Opt. (1)

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17, 015604 (2015)
[Crossref]

J. Opt. Soc. Am. A-Opt. Image Sci. Vis. (1)

R. Brauer, F. Wyrowsky, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 8, 572–578 (1991).
[Crossref]

Nat. Commun. (1)

O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016)
[Crossref] [PubMed]

Nat. Methods (2)

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Glueckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848–8547 (2010).
[Crossref] [PubMed]

Neurophotonics (1)

A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, “Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures,” Neurophotonics 2, 021007 (2015)
[Crossref] [PubMed]

Opt. Commun. (3)

J. Glueckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]

A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012).
[Crossref]

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Express (8)

Opt. Laser Eng. (1)

H. Wang, W. Yue, Q. Song, J. Liu, and G. Situ, “A hybrid gerchberg-saxton-like algorithm for DOE and CGH calculation,” Opt. Laser Eng. 89 pp. 105–108 (2016).

Opt. Lett. (1)

Optics Commun. (1)

T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Improvement of the image quality of random phase-free holography using an iterative method,” Optics Commun. 355, 596–601 (2015).
[Crossref]

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

PLoS ONE (1)

M. Zahid, M. Vélez-Fort, E. Papagiakoumou, C. Ventalon, M. C. Angulo, and V. Emiliani, “Holographic photolysis for multiple cell stimulation in mouse hippocampal slices,” PLoS ONE 5, e9431 (2010).
[Crossref] [PubMed]

Proc. R. Soc. London Ser. A (1)

J. Nye and M. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
[Crossref]

Rev. Sci. Instrum. (1)

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Sci. Rep. (2)

S. Bovetti, C. Moretti, S. Zucca, M. Del Maschio, P. Bonifazi, and T. Fellin, “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2016).
[Crossref]

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
[Crossref] [PubMed]

Other (3)

D. Tanese, Ju-Yung Wen, V. Zampini, V. DeSars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics (2017, In press)
[Crossref]

P. Wang and R. Menon, “Three-dimensional lithography via digital holography,” in “Frontiers in Optics 2012/Laser Science XXVIII,” (Optical Society of America, 2012), p. FTu3A.4.

J. Goodman, Speckle Phenomena in Optics (Roberts and Cie, 2006).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (1121 KB)      3D intensity stack

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Numerical simulation of a speckle patterns obtained by computer generated holography. a) intensity and b) phase. The arrow indicates an example of zero intensity associated with a vortex phase. The white circle in b) represents the boundary of the disk intensity in a).

Fig. 2
Fig. 2

A typical CGH projection system. A Ti:Sapphire laser beam is expanded to illuminate the full SLM active area. A telescope (L1,L2) conjugates the SLM with the back pupil plane of a first objective (Obj. 1). For the measurements of the axial propagation we used second objective (Obj. 2) and a tube lens (TL) to conjugate the image plane with a CCD camera (Cam.). In order to achieve complex amplitude modulation with a single phase-only SLM, an aperture block (App. Block) is introduced into an intermediate image plane.

Fig. 3
Fig. 3

Comparison of a standard 10 µm holographic disk (a) and a vortex-free holographic disk (b). The histogram (c) of vortex-free disk intensity (normalized by the average intensity < I >) exhibits a sharper, more pronounced peak (solid line, circles) than that of the speckled disk (dashed line, squares). Same comparison for two photon fluorescence excitation (d,e). Again the histogram (f) exhibits a sharper peak for the (solid line, circles) for the vortex-free disk compared to the that of the speckled disk (dashed line, squares).

Fig. 4
Fig. 4

Axial intensity profiles of the speckled (a) and singularity-free disk (b). Light energy axial confinement is plotted (c) for a speckled holographic disk (blue), a speckle free disk (green) and a disk with flat phase (red). Dashed lines show experimental data and solid lines numerical simulations. For the GPC beams the axial resolution was obtained from the Rayleigh range of a Gaussian beam defined as: z R = n π w 0 2 / λ where n is the index of refraction and w0 is the waist of the Gaussian beam. Experimental curves closely follow theoretical predictions.

Fig. 5
Fig. 5

(Numerical simulations) Trade-offs between shape uniformity, diffraction efficiency and axial confinement. Diffraction efficiency increased and uniformity decreased through the course of 50 iterations of the IFTA(a). Algorithm convergence is represented by connected dots where the final 50 th iteration corresponds to the highest efficiency. The amplitude at the SLM was clipped at every iteration after saturating by factors indicated next to each line (a) or point (b). Red “x” points correspond to values obtained with phase-only holography. Higher saturation ratios produced more efficient, less uniform, and more axially confined patterns. Illustrations of shapes obtained for saturation factors of 1.0, 1.5 and 2.1 are shown in figures (c), (d) and (e) respectively as well as a shape with phase vortices generated with standard phase-only holography (f).

Fig. 6
Fig. 6

Experimental measurement of the trade-off between shape uniformity and diffraction efficiency. As predicted numerically, diffraction efficiency increases at the expense of intensity uniformity as illustrated in (a) (measurements performed for saturation parameters ranging from 1.0 to 2.1 as well as for phase-only modulation (Ph)). The patterns obtained for saturation parameters from 1.2 to 1.7, as well as phase-only modulation, are illustrated in (b).

Fig. 7
Fig. 7

Probability Pφ = +2π) of generating a vortex as a function of the standard deviation for the phase difference between two adjacent corners of a s-wide square after filter: σΔ. Results from numerical simulation (dots) is the ratio of positive vortices to the number of diffraction limited spots in the field of view. For low values of P (see inset), we find that P = 2 P k .

Fig. 8
Fig. 8

Example phase patterns with histogram of the distribution (a–c) obtained by filtering an initial random phase map and their corresponding power spectra (e–g) for a uniform intensity for the disked-shape in the image plane. The filter widths used are w = 1 pixels (a, d), w = 4 pixels (b, d), w = 10 pixels (c, f). The oversampling factor is s = 4. The filter gain is ajusted so the vortex probability is 10 4: G0 ≈ 1, 2 (a–d), G0 ≈ 0 9 (b–e), G0 ≈ 58 (c–f). In (g) we show the distibution of the intensity across the pupil, averaged over all directions.

Fig. 9
Fig. 9

Example output from the iterative Fourier algorithm. An initial diffuser (a) is produced with s = 4, w = 20 pixels in a 90 × λ/(2NA)-wide disk, generating the power spectrum shown in (b). Final diffuser (c) and intensity distribution at the pupil (d) after 15 iterations between image and Fourier planes, imposing uniform intensity throughout the image disk and zero intensity outside of the pupil. The final disk (e) exhibit improved uniformity as shown by its intensity histogram (f).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ amp = 2 cos 1 ( A A ill ) G p
φ SLM = φ + φ amp
Δ φ = Δ φ 1 + Δ φ 2 + Δ φ 3 + Δ φ 4
G 0 2 π w 2 exp ( x 2 + y 2 2 w 2 )
σ w 2 = σ 0 2 G 0 2 2 π w 2 = G 0 2 π 6 w 2
σ Δ 2 = 2 σ w 2 [ 1 exp ( s 2 / ( 4 w 2 ) ) ]
P k = 1 2 erfc ( π 2 σ Δ 2 )

Metrics