Abstract

We demonstrate simple and intuitive methods, for dispersion optimization and characterization of highly nonlinear fiber (HNLF) for use in four-wave-mixing (FWM) based time lens applications. A composite dispersion-flattened HNLF is optimized for high bandwidth time lens processing, by segmentation to mitigate FWM impairments due to dispersion fluctuations. The fiber is used for FWM conversion of 32 WDM-channels with 50 GHz spacing in a time lens, with −4.6 dB total efficiency, and <1 dB per-channel efficiency difference. The novel characterization method is based on two tunable continuous-wave lasers. The method is experimentally verified to predict the spectral output profile of time lenses for broadband multicarrier input, with detailed numerical simulations for support.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8(4), 232–234 (1983).
    [Crossref] [PubMed]
  2. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photonics Technol. Lett. 16(4), 1059–1061 (2004).
    [Crossref]
  3. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [Crossref]
  4. L. F. Mollenauer and C. Xu, “Time-lens timing-jitter compensator in ultra-long haul DWDM dispersion managed soliton transmissions,” in Proceedings of Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2002), pp. CPDB1.
    [Crossref]
  5. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [Crossref] [PubMed]
  6. H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
    [Crossref] [PubMed]
  7. P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
    [Crossref]
  8. P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).
  9. P. Guan, F. Da Ros, M. Lillieholm, H. Hu, K. M. Røge, M. Galili, T. Morioka, and L. K. Oxenløwe, “16 channel WDM regeneration in a single phase-sensitive amplifier through optical fourier transformation,” in Proceedings of European Conference on Optical Communication, ECOC (2016), paper Th.3.B.3.
  10. K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
    [Crossref]
  11. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
    [Crossref] [PubMed]
  12. T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
    [Crossref]
  13. E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
    [Crossref]
  14. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical fourier transformation based receiver,” in CLEO: Science and Innovations, OSA Postdeadline Paper Digest (Optical Society of America, 2013), paper CTh5D.5.
  15. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
    [Crossref] [PubMed]
  16. T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications,” Electron. Lett. 39(13), 972 (2003).
    [Crossref]
  17. M. Lillieholm, M. Galili, L. Grüner-Nielsen, and L. K. Oxenløwe, “Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers,” Opt. Lett. 41(21), 4887–4890 (2016).
    [Crossref] [PubMed]
  18. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998).
    [Crossref]
  19. R. S. Yuki Taniguchi, J. Hiroishi, and M. Takahashi, “Nonlinear optical fiber, nonlinear optical device, and optical signal processor,” U.S. patent EP1988411A1 (2008).
  20. B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express 20(17), 18611–18619 (2012).
    [Crossref] [PubMed]
  21. K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett. 19(16), 1189–1191 (1994).
    [Crossref] [PubMed]
  22. E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
    [Crossref]
  23. E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: Localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
    [Crossref]
  24. M. Lillieholm, M. Galili, and L. K. Oxenløwe, “Dispersion-flattened composite highly nonlinear fibre optimised for broadband pulsed four-wave mixing,” in Proceedings of European Conference on Optical Communication, (ECOC, 2016), pp. 330–332.
  25. P. Guan, K. M. Røge, H. C. H. Mulvad, H. Hu, T. Morioka, and L. K. Oxenløwe, “Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), pp. 3–5.
    [Crossref]
  26. H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
    [Crossref]
  27. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21(1), 61–68 (2003).
    [Crossref]
  28. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  29. L. S. Rishøj and K. Rottwitt, “Influence of variations of the GVD on wavelength conversion at second gain region of a parametric process,” in Advanced Photonics & Renewable Energy, OSA Technical Digest (Optical Society of America, 2010), paper NTuC11.
  30. L. Cohen, W. Mammel, and S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. 18(1), 49–53 (1982).
    [Crossref]
  31. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing stimulated Brillouin scattering,” in Proceedings of. Integrated Optics and Optical Fiber Communications (IOOC, 1995), pp. 108–111.

2016 (2)

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

M. Lillieholm, M. Galili, L. Grüner-Nielsen, and L. K. Oxenløwe, “Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers,” Opt. Lett. 41(21), 4887–4890 (2016).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2009 (3)

E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: Localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

2008 (2)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

2006 (1)

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

2004 (1)

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photonics Technol. Lett. 16(4), 1059–1061 (2004).
[Crossref]

2003 (2)

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications,” Electron. Lett. 39(13), 972 (2003).
[Crossref]

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21(1), 61–68 (2003).
[Crossref]

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

1998 (1)

1996 (1)

1994 (2)

K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett. 19(16), 1189–1191 (1994).
[Crossref] [PubMed]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

1992 (1)

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

1983 (1)

1982 (1)

L. Cohen, W. Mammel, and S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. 18(1), 49–53 (1982).
[Crossref]

Alic, N.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: Localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

Andrekson, P. A.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Aparicio, J. M.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Bres, C.-S.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Chiang, T. K.

Clausen, A. T.

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
[Crossref]

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

Cohen, L.

L. Cohen, W. Mammel, and S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. 18(1), 49–53 (1982).
[Crossref]

Eggleton, B. J.

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

Fini, J. M.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Futami, F.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photonics Technol. Lett. 16(4), 1059–1061 (2004).
[Crossref]

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[Crossref] [PubMed]

Galili, M.

M. Lillieholm, M. Galili, L. Grüner-Nielsen, and L. K. Oxenløwe, “Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers,” Opt. Lett. 41(21), 4887–4890 (2016).
[Crossref] [PubMed]

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
[Crossref]

M. Lillieholm, M. Galili, and L. K. Oxenløwe, “Dispersion-flattened composite highly nonlinear fibre optimised for broadband pulsed four-wave mixing,” in Proceedings of European Conference on Optical Communication, (ECOC, 2016), pp. 330–332.

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

Geng, Z.

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[Crossref] [PubMed]

Grüner-Nielsen, L.

Guan, P.

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

P. Guan, K. M. Røge, H. C. H. Mulvad, H. Hu, T. Morioka, and L. K. Oxenløwe, “Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), pp. 3–5.
[Crossref]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hirano, M.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications,” Electron. Lett. 39(13), 972 (2003).
[Crossref]

Hirooka, T.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photonics Technol. Lett. 16(4), 1059–1061 (2004).
[Crossref]

Holzlohner, R.

Hu, H.

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

P. Guan, K. M. Røge, H. C. H. Mulvad, H. Hu, T. Morioka, and L. K. Oxenløwe, “Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), pp. 3–5.
[Crossref]

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

Hvam, J. M.

Inoue, K.

K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett. 19(16), 1189–1191 (1994).
[Crossref] [PubMed]

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

Jannson, T.

Jeppesen, P.

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
[Crossref]

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

Ji, H.

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

Kagi, N.

Karlsson, M.

Kato, T.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications,” Electron. Lett. 39(13), 972 (2003).
[Crossref]

Kazovsky, L. G.

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

Kuo, B. P.-P.

Lefrancois, S.

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Lillieholm, M.

M. Lillieholm, M. Galili, L. Grüner-Nielsen, and L. K. Oxenløwe, “Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers,” Opt. Lett. 41(21), 4887–4890 (2016).
[Crossref] [PubMed]

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

M. Lillieholm, M. Galili, and L. K. Oxenløwe, “Dispersion-flattened composite highly nonlinear fibre optimised for broadband pulsed four-wave mixing,” in Proceedings of European Conference on Optical Communication, (ECOC, 2016), pp. 330–332.

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[Crossref] [PubMed]

Lowery, A. J.

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

Lumish, S.

L. Cohen, W. Mammel, and S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. 18(1), 49–53 (1982).
[Crossref]

Lundström, C.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Mammel, W.

L. Cohen, W. Mammel, and S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. 18(1), 49–53 (1982).
[Crossref]

Marhic, M. E.

Meldgaard Roge, K.

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

Menyuk, C. R.

Morioka, T.

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

P. Guan, K. M. Røge, H. C. H. Mulvad, H. Hu, T. Morioka, and L. K. Oxenløwe, “Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), pp. 3–5.
[Crossref]

Moro, S.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Mulvad, H. C. H.

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
[Crossref]

P. Guan, K. M. Røge, H. C. H. Mulvad, H. Hu, T. Morioka, and L. K. Oxenløwe, “Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), pp. 3–5.
[Crossref]

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

Myslivets, E.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: Localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

Nakazawa, M.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photonics Technol. Lett. 16(4), 1059–1061 (2004).
[Crossref]

Okuno, T.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications,” Electron. Lett. 39(13), 972 (2003).
[Crossref]

Olsson, B. E.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Onishi, M.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications,” Electron. Lett. 39(13), 972 (2003).
[Crossref]

Oxenloewe, L.

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

Oxenløwe, L. K.

M. Lillieholm, M. Galili, L. Grüner-Nielsen, and L. K. Oxenløwe, “Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers,” Opt. Lett. 41(21), 4887–4890 (2016).
[Crossref] [PubMed]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
[Crossref]

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

P. Guan, K. M. Røge, H. C. H. Mulvad, H. Hu, T. Morioka, and L. K. Oxenløwe, “Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), pp. 3–5.
[Crossref]

M. Lillieholm, M. Galili, and L. K. Oxenløwe, “Dispersion-flattened composite highly nonlinear fibre optimised for broadband pulsed four-wave mixing,” in Proceedings of European Conference on Optical Communication, (ECOC, 2016), pp. 330–332.

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

Palushani, E.

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
[Crossref]

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

Pu, M.

Radic, S.

Røge, K. M.

P. Guan, K. M. Røge, H. C. H. Mulvad, H. Hu, T. Morioka, and L. K. Oxenløwe, “Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), pp. 3–5.
[Crossref]

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[Crossref] [PubMed]

Schröder, J.

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

Shigematsu, M.

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications,” Electron. Lett. 39(13), 972 (2003).
[Crossref]

Sinkin, O. V.

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

Turner, A. C.

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Watanabe, S.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photonics Technol. Lett. 16(4), 1059–1061 (2004).
[Crossref]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Wiberg, A. O. J.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Windmiller, J. R.

Yvind, K.

Zweck, J.

Electron. Lett. (1)

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications,” Electron. Lett. 39(13), 972 (2003).
[Crossref]

IEEE J. Quantum Electron. (3)

E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009).
[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

L. Cohen, W. Mammel, and S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. 18(1), 49–53 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (3)

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photonics Technol. Lett. 16(4), 1059–1061 (2004).
[Crossref]

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonics Technol. Lett. 18(10), 1194–1196 (2006).
[Crossref]

J. Lightwave Technol. (4)

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

P. Guan, K. Meldgaard Roge, M. Lillieholm, M. Galili, H. Hu, T. Morioka, and L. Oxenloewe, “Time lens based optical Fourier transformation for all-optical signal processing of spectrally-efficient data,” J. Lightwave Technol. 99, 1 (2016).

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: Localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21(1), 61–68 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Other (10)

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical fourier transformation based receiver,” in CLEO: Science and Innovations, OSA Postdeadline Paper Digest (Optical Society of America, 2013), paper CTh5D.5.

L. F. Mollenauer and C. Xu, “Time-lens timing-jitter compensator in ultra-long haul DWDM dispersion managed soliton transmissions,” in Proceedings of Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2002), pp. CPDB1.
[Crossref]

P. Guan, S. Lefrancois, M. Lillieholm, H. C. H. Mulvad, K. M. Røge, H. Hu, J. Schröder, B. J. Eggleton, Z. Geng, A. J. Lowery, T. Morioka, and L. K. Oxenløwe, “All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver,” in Proceedings of European Conference on Optical Communication, ECOC (2014), pp. 1–3.
[Crossref]

P. Guan, F. Da Ros, M. Lillieholm, H. Hu, K. M. Røge, M. Galili, T. Morioka, and L. K. Oxenløwe, “16 channel WDM regeneration in a single phase-sensitive amplifier through optical fourier transformation,” in Proceedings of European Conference on Optical Communication, ECOC (2016), paper Th.3.B.3.

R. S. Yuki Taniguchi, J. Hiroishi, and M. Takahashi, “Nonlinear optical fiber, nonlinear optical device, and optical signal processor,” U.S. patent EP1988411A1 (2008).

M. Lillieholm, M. Galili, and L. K. Oxenløwe, “Dispersion-flattened composite highly nonlinear fibre optimised for broadband pulsed four-wave mixing,” in Proceedings of European Conference on Optical Communication, (ECOC, 2016), pp. 330–332.

P. Guan, K. M. Røge, H. C. H. Mulvad, H. Hu, T. Morioka, and L. K. Oxenløwe, “Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), pp. 3–5.
[Crossref]

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in Proceedings of European Conference on Optical Communication, (ECOC, 2011), pp. 1–3.
[Crossref]

L. S. Rishøj and K. Rottwitt, “Influence of variations of the GVD on wavelength conversion at second gain region of a parametric process,” in Advanced Photonics & Renewable Energy, OSA Technical Digest (Optical Society of America, 2010), paper NTuC11.

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient phase modulation scheme for suppressing stimulated Brillouin scattering,” in Proceedings of. Integrated Optics and Optical Fiber Communications (IOOC, 1995), pp. 108–111.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Principle of WDM-OTDM conversion based on FWM, and indicated CW positions and measurement points for the characterization method (circles). Also shown is how the measurements are combined to estimate the idler.

Fig. 2
Fig. 2

(a) Simulated FWM spectra for conversion of the WDM signal with a 0.5-nm chirped pump. (b) FWM spectra for a 4.8-nm chirped pump, with insets showing pump zoom-ins. (c) Optical pump2 waveform, (d) and WDM symbols.

Fig. 3
Fig. 3

(a), (b) CW conversion efficiency simulations for dispersion slopes S1 and S2, grouped by channel position. Black line indicates simulations at λp = λ0. (c) CW estimates for varied simulation parameters. (d)-(g) Simulated time lens spectra (solid lines) for different pump chirp and dispersion slope combinations, and CW estimates using the CW efficiency data (symbols). In (f), (g) the red dotted line is estimate for full pump bandwidth Δωp.

Fig. 4
Fig. 4

(a) Chirped pump FWM channel conversion efficiency (lines) and corresponding predictions using the CW characterization estimates (symbols) for different dispersion slopes and pump chirp rates. (b)-(c) Spectra for chirped pump FWM conversion of individual channels for different dispersion slopes with pump chirp rate K2/2. Insets show the channel walkoff.

Fig. 5
Fig. 5

(a) Illustration of rapid-map segmentation into 9 pieces and rearrangement of original fiber with a linear ZDW variation. (b) Conversion efficiency simulations for original fiber and various rapid-map configurations. (c) Illustration of the rapid-map effect on the cumulative phase mismatch at 40 nm detuning.

Fig. 6
Fig. 6

(a) Conversion efficiency vs. pump-signal detuning for the 19-rapid-map with different HNLF-to-HNLF splice losses and fixed Pp = 25 dBm. (b) The conversion efficiencies for the pump power increasing with the splice losses. (c) Max. efficiency loss normalized by the total splice losses vs. the loss per splice (fixed Pp).

Fig. 7
Fig. 7

(a) ZDW measurements for 50-m DF-HNLF segments. Numbered data points indicate order of assembly for rapid-map. (b) ZDW map for composite DF-HNLF in rapid-map configuration. (c) CW input conversion efficiency measurements for composite DF-HNLF with 28 dBm pump power at different pump wavelengths.

Fig. 8
Fig. 8

(a) Setup for CW characterization of HNLF for chirped pump FWM. (b) Sample FWM spectra for HNLF1 and HNLF2. (c) CW measurements for bandwidth estimation of 32-channel conversion using 2.6 nm chirped pump in HNLF1. (d) CW measurements for estimation of 8- and 16-channel conversion using a 1.6 nm chirped pump in HNLF2. (e) Channel conversion efficiency predictions for HNLF1 and HNLF2.

Fig. 9
Fig. 9

(a) Setup for conversion of 32 WDM channels in time lens based on FWM in the composite DF-HNLF. (b) Spectrum at input to the composite DF-HNLF with insets showing the measured WDM and pump waveforms.

Fig. 10
Fig. 10

(a) Chirped-pump FWM spectrum with 32-channel WDM input in HNLF1, and the estimated idler shape as predicted from CW characterization. (b) Chirped-pump FWM spectrum for channels 1 and 32 only. Inset shows the converted channel autocorrelations after 375 m SSMF.

Fig. 11
Fig. 11

(a)-(b) FWM spectra at the output of HNLF2 for 8 and 16 channels, and their respective idler shape predictions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δβ= 2πc λ 0 2 S( λ p λ 0 ) ( λ s λ p ) 2 ,
δ β p 2πc| S |Δ λ p ( 1 λ s λ p ) 2 .
τ wo =[ β 2 ( ω s ω p )+ β 3 2 ( ω s ω p ) 2 + β 4 6 ( ω s ω p ) 3 ]L.
Κ(z)2γ P p z+ 0 z Δβ( z )d z .

Metrics