Abstract

We present a thorough investigation aimed at the optimization of a phase-sensitive optical parametric amplifier capable of simultaneous phase and amplitude regeneration. The regeneration potential, quantified in terms of the phase-sensitive extinction ratio, has been carefully assessed by a scalar model involving high-order waves associated with high-order four-wave mixing processes, going beyond the usual three-wave approach. Additionally, this model permits to unveil the physics involved in the high-order waves assisted regeneration. This permits a multi-dimensional and comprehensive optimization that fully exploits the underlying regenerative capability and expedites the design of a transparent regenerator, showing the potential to act as basic building block in future all-optical processing. We also compare different strategies when such regenerators are configured in concatenation. The approach can be readily applied to virtually any similar applications for different all-optical processing functionalities.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  3. Z. Tong and S. Radic, “Low-noise optical amplification and signal processing in parametric devices,” Adv. Opt. Photonics 5(3), 318 (2013).
    [Crossref]
  4. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [Crossref]
  5. J. Parra-Cetina, A. Kumpera, M. Karlsson, and P. A. Andrekson, “Phase-sensitive fiber-based parametric all-optical switch,” Opt. Express 23(26), 33426–33436 (2015).
    [Crossref] [PubMed]
  6. M. Karlsson, “Transmission systems with low noise phase-sensitive parametric amplifiers,” J. Lightwave Technol. 34(5), 1411–1423 (2016).
    [Crossref]
  7. S. L. Olsson, M. Karlsson, and P. A. Andrekson, “Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems,” Opt. Express 23(9), 11724–11740 (2015).
    [Crossref] [PubMed]
  8. F. Parmigiani, G. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Polarization-assisted phase-sensitive processor,” J. Lightwave Technol. 33(6), 1166–1174 (2015).
    [Crossref]
  9. C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
    [Crossref] [PubMed]
  10. M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Efficient phase regeneration of DPSK signal by sideband-assisted dual-pump phase-sensitive amplifier,” Electron. Lett. 49(2), 140–141 (2013).
    [Crossref]
  11. M. Gao, T. Kurosu, T. Inoue, and S. Namiki, ”Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers.” 39th European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), We.3.A.5 (2013).
  12. J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
    [Crossref]
  13. T. Kurosu, M. Gao, K. Solis-Trapala, and S. Namiki, “Phase regeneration of phase encoded signals by hybrid optical phase squeezer,” Opt. Express 22(10), 12177–12188 (2014).
    [Crossref] [PubMed]
  14. R. P. Webb, M. Power, and R. J. Manning, “Phase-sensitive frequency conversion of quadrature modulated signals,” Opt. Express 21(10), 12713–12727 (2013).
    [Crossref] [PubMed]
  15. K. R. H. Bottrill, F. Parmigiani, L. Jones, G. Hesketh, D. J. Richardson, and P. Petropoulos, “Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF,” in Proceedings of the European Conference on Optical Communication (IEEE, 2015), p. We.3.6.3.
    [Crossref]
  16. F. Parmigiani, K. R. H. Bottrill, R. Slavík, D. J. Richardson, and P. Petropoulos, “Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification,” IEEE Photonics Technol. Lett. 28(8), 845–848 (2016).
    [Crossref]
  17. F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
    [Crossref]
  18. C. Lundström, Z. Tong, M. Karlsson, and P. A. Andrekson, “Phase-to-phase and phase-to-amplitude transfer characteristics of a nondegenerate-idler phase-sensitive amplifier,” Opt. Lett. 36(22), 4356–4358 (2011).
    [Crossref] [PubMed]
  19. K. Saito and H. Uenohara, “Analytical investigation of operating conditions for simultaneous intensity and phase noise suppression using phase sensitive semiconductor optical amplifiers,” Optical Fiber Communication Conference, OSA Technical Digest (CD) 2013 (Opitcal Society of America, 2013), JTh2A.31 (2013).
    [Crossref]
  20. M. Gao, T. Inoue, T. Kurosu, and S. Namiki, “Evolution of the gain extinction ratio in dual-pump phase sensitive amplification,” Opt. Lett. 37(9), 1439–1441 (2012).
    [Crossref] [PubMed]
  21. W. Xie, I. Fsaifes, T. Labidi, and F. Bretenaker, “Investigation of degenerate dual-pump phase sensitive amplifier using multi-wave model,” Opt. Express 23(25), 31896–31907 (2015).
    [Crossref] [PubMed]
  22. M. E. Marhic, A. A. Rieznik, G. Kalogerakis, C. Braimiotis, H. L. Fragnito, and L. G. Kazovsky, “Accurate numerical simulation of short fiber optical parametric amplifiers,” Opt. Express 16(6), 3610–3622 (2008).
    [Crossref] [PubMed]

2016 (2)

M. Karlsson, “Transmission systems with low noise phase-sensitive parametric amplifiers,” J. Lightwave Technol. 34(5), 1411–1423 (2016).
[Crossref]

F. Parmigiani, K. R. H. Bottrill, R. Slavík, D. J. Richardson, and P. Petropoulos, “Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification,” IEEE Photonics Technol. Lett. 28(8), 845–848 (2016).
[Crossref]

2015 (4)

2014 (2)

F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
[Crossref]

T. Kurosu, M. Gao, K. Solis-Trapala, and S. Namiki, “Phase regeneration of phase encoded signals by hybrid optical phase squeezer,” Opt. Express 22(10), 12177–12188 (2014).
[Crossref] [PubMed]

2013 (3)

R. P. Webb, M. Power, and R. J. Manning, “Phase-sensitive frequency conversion of quadrature modulated signals,” Opt. Express 21(10), 12713–12727 (2013).
[Crossref] [PubMed]

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Efficient phase regeneration of DPSK signal by sideband-assisted dual-pump phase-sensitive amplifier,” Electron. Lett. 49(2), 140–141 (2013).
[Crossref]

Z. Tong and S. Radic, “Low-noise optical amplification and signal processing in parametric devices,” Adv. Opt. Photonics 5(3), 318 (2013).
[Crossref]

2012 (2)

2011 (2)

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

C. Lundström, Z. Tong, M. Karlsson, and P. A. Andrekson, “Phase-to-phase and phase-to-amplitude transfer characteristics of a nondegenerate-idler phase-sensitive amplifier,” Opt. Lett. 36(22), 4356–4358 (2011).
[Crossref] [PubMed]

2010 (2)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

2008 (1)

Anderson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Andrekson, P. A.

Bogris, A.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Bottrill, K. R. H.

F. Parmigiani, K. R. H. Bottrill, R. Slavík, D. J. Richardson, and P. Petropoulos, “Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification,” IEEE Photonics Technol. Lett. 28(8), 845–848 (2016).
[Crossref]

K. R. H. Bottrill, F. Parmigiani, L. Jones, G. Hesketh, D. J. Richardson, and P. Petropoulos, “Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF,” in Proceedings of the European Conference on Optical Communication (IEEE, 2015), p. We.3.6.3.
[Crossref]

Braimiotis, C.

Bretenaker, F.

Corcoran, B.

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Essiambre, R. J.

Foschini, G. J.

Fragnito, H. L.

Fsaifes, I.

Gao, M.

Goebel, B.

Grüner-Nielsen, L.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Herstrom, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Hesketh, G.

F. Parmigiani, G. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Polarization-assisted phase-sensitive processor,” J. Lightwave Technol. 33(6), 1166–1174 (2015).
[Crossref]

K. R. H. Bottrill, F. Parmigiani, L. Jones, G. Hesketh, D. J. Richardson, and P. Petropoulos, “Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF,” in Proceedings of the European Conference on Optical Communication (IEEE, 2015), p. We.3.6.3.
[Crossref]

Hesketh, G. D.

F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
[Crossref]

Horak, P.

F. Parmigiani, G. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Polarization-assisted phase-sensitive processor,” J. Lightwave Technol. 33(6), 1166–1174 (2015).
[Crossref]

F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
[Crossref]

Inoue, T.

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Efficient phase regeneration of DPSK signal by sideband-assisted dual-pump phase-sensitive amplifier,” Electron. Lett. 49(2), 140–141 (2013).
[Crossref]

M. Gao, T. Inoue, T. Kurosu, and S. Namiki, “Evolution of the gain extinction ratio in dual-pump phase sensitive amplification,” Opt. Lett. 37(9), 1439–1441 (2012).
[Crossref] [PubMed]

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Jones, L.

K. R. H. Bottrill, F. Parmigiani, L. Jones, G. Hesketh, D. J. Richardson, and P. Petropoulos, “Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF,” in Proceedings of the European Conference on Optical Communication (IEEE, 2015), p. We.3.6.3.
[Crossref]

Kakande, J.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Kalogerakis, G.

Karlsson, M.

Kazovsky, L. G.

Kramer, G.

Kumpera, A.

Kurosu, T.

Labidi, T.

Lundström, C.

C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
[Crossref] [PubMed]

C. Lundström, Z. Tong, M. Karlsson, and P. A. Andrekson, “Phase-to-phase and phase-to-amplitude transfer characteristics of a nondegenerate-idler phase-sensitive amplifier,” Opt. Lett. 36(22), 4356–4358 (2011).
[Crossref] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Manning, R. J.

Marhic, M. E.

Namiki, S.

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Olsson, S. L.

Parmigiani, F.

F. Parmigiani, K. R. H. Bottrill, R. Slavík, D. J. Richardson, and P. Petropoulos, “Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification,” IEEE Photonics Technol. Lett. 28(8), 845–848 (2016).
[Crossref]

F. Parmigiani, G. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Polarization-assisted phase-sensitive processor,” J. Lightwave Technol. 33(6), 1166–1174 (2015).
[Crossref]

F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

K. R. H. Bottrill, F. Parmigiani, L. Jones, G. Hesketh, D. J. Richardson, and P. Petropoulos, “Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF,” in Proceedings of the European Conference on Optical Communication (IEEE, 2015), p. We.3.6.3.
[Crossref]

Parra-Cetina, J.

Petropoulos, P.

F. Parmigiani, K. R. H. Bottrill, R. Slavík, D. J. Richardson, and P. Petropoulos, “Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification,” IEEE Photonics Technol. Lett. 28(8), 845–848 (2016).
[Crossref]

F. Parmigiani, G. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Polarization-assisted phase-sensitive processor,” J. Lightwave Technol. 33(6), 1166–1174 (2015).
[Crossref]

F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

K. R. H. Bottrill, F. Parmigiani, L. Jones, G. Hesketh, D. J. Richardson, and P. Petropoulos, “Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF,” in Proceedings of the European Conference on Optical Communication (IEEE, 2015), p. We.3.6.3.
[Crossref]

Phelan, R.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Power, M.

Radic, S.

Z. Tong and S. Radic, “Low-noise optical amplification and signal processing in parametric devices,” Adv. Opt. Photonics 5(3), 318 (2013).
[Crossref]

Richardson, D. J.

F. Parmigiani, K. R. H. Bottrill, R. Slavík, D. J. Richardson, and P. Petropoulos, “Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification,” IEEE Photonics Technol. Lett. 28(8), 845–848 (2016).
[Crossref]

F. Parmigiani, G. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Polarization-assisted phase-sensitive processor,” J. Lightwave Technol. 33(6), 1166–1174 (2015).
[Crossref]

F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

K. R. H. Bottrill, F. Parmigiani, L. Jones, G. Hesketh, D. J. Richardson, and P. Petropoulos, “Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF,” in Proceedings of the European Conference on Optical Communication (IEEE, 2015), p. We.3.6.3.
[Crossref]

Rieznik, A. A.

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Slavík, R.

F. Parmigiani, K. R. H. Bottrill, R. Slavík, D. J. Richardson, and P. Petropoulos, “Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification,” IEEE Photonics Technol. Lett. 28(8), 845–848 (2016).
[Crossref]

F. Parmigiani, G. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Polarization-assisted phase-sensitive processor,” J. Lightwave Technol. 33(6), 1166–1174 (2015).
[Crossref]

F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Solis-Trapala, K.

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Syvridis, D.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Tong, Z.

Webb, R. P.

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Winzer, P. J.

Xie, W.

Adv. Opt. Photonics (1)

Z. Tong and S. Radic, “Low-noise optical amplification and signal processing in parametric devices,” Adv. Opt. Photonics 5(3), 318 (2013).
[Crossref]

Electron. Lett. (1)

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, “Efficient phase regeneration of DPSK signal by sideband-assisted dual-pump phase-sensitive amplifier,” Electron. Lett. 49(2), 140–141 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

F. Parmigiani, K. R. H. Bottrill, R. Slavík, D. J. Richardson, and P. Petropoulos, “Multi-channel phase regenerator based on polarization-assisted phase-sensitive amplification,” IEEE Photonics Technol. Lett. 28(8), 845–848 (2016).
[Crossref]

F. Parmigiani, G. D. Hesketh, R. Slavík, P. Horak, P. Petropoulos, and D. J. Richardson, “Optical phase quantizer based on phase sensitive four wave mixing at low nonlinear phase shift,” IEEE Photonics Technol. Lett. 26(21), 2146–2149 (2014).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (2)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Anderson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Other (4)

K. Saito and H. Uenohara, “Analytical investigation of operating conditions for simultaneous intensity and phase noise suppression using phase sensitive semiconductor optical amplifiers,” Optical Fiber Communication Conference, OSA Technical Digest (CD) 2013 (Opitcal Society of America, 2013), JTh2A.31 (2013).
[Crossref]

K. R. H. Bottrill, F. Parmigiani, L. Jones, G. Hesketh, D. J. Richardson, and P. Petropoulos, “Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF,” in Proceedings of the European Conference on Optical Communication (IEEE, 2015), p. We.3.6.3.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

M. Gao, T. Kurosu, T. Inoue, and S. Namiki, ”Low-penalty phase de-multiplexing of QPSK signal by dual-pump phase sensitive amplifiers.” 39th European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), We.3.A.5 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Definitions of waves, pump-pump separation, and signal offset for the 7-wave model. The three waves in the dashed rectangle are regarded as the conventional 3-wave model.

Fig. 2
Fig. 2

(a) PSER and (b) PSGA vs. δλOFS and ΔλPPS estimated by the 7-wave model for 23 dBm total pump power in small signal regime. The nonlinear medium is a typical standard HNLF with λZDW = 1547.5 nm. All other parameters are given in text.

Fig. 3
Fig. 3

Gain profiles including maximum gain (Gmax), minimum gain (Gmin), PSER, and PSGA with respect to (a) total nonlinearity: nonlinear phase shift (NPS), and (b) degree-of-saturation (DoS), respectively, from both 3- and 7-wave models.

Fig. 4
Fig. 4

(a, b) Phase-to-gain, (c, d) Phase-to-power, and (e, f) Phase-to-phase transfer characteristics with respect to input signal phase and DoS, estimated by 3-wave (left, (a, c, and e)) and 7-wave (right, (b, d, and f)) model, respectively.

Fig. 5
Fig. 5

Output signal trajectory in the complex plane estimated by (a) 3-wave and (b) 7-wave model for various DoS. The input signal is represented as the unit circle. The output trajectories are normalized in amplitude with respect to the input signal.

Fig. 6
Fig. 6

Error vector magnitude of the input and output BPSK signal vs. DoS

Fig. 7
Fig. 7

Normalized constellations of the BPSK signal: (a) input, output with (b) DoS = −20 dB, (c) DoS = −7.5 dB, and (d) DoS = 0 dB, respectively, from 7-wave model.

Fig. 8
Fig. 8

EVM of the input and output QPSK signal including both in-phase (I) and quadrature (Q) components numerically estimated by 3- and 7-wave models, respectively.

Fig. 9
Fig. 9

Constellations of the I and Q components of the QPSK signal at (a, e) [respectively, (i, n)] input, output with (b, f) [respectively, (j, o)] DoS = −20.0 dB, (c, g) [respectively, (k, p)] DoS = −6.5 dB, and (d, h) [respectively, (m, q)] DoS = −3.0 dB, respectively, from 3-wave (respectively, 7-wave) model. All the constellations are normalized.

Fig. 10
Fig. 10

Gain properties including Gmax, Gmin, PSER, and PSGA as respect to NPS for single stage of HNLF (dot-dashed lines, labelled with “Single stage”) and cascaded two stages of HNLF (solid lines, labeled with “Two stages”), respectively.

Fig. 11
Fig. 11

PSER numerically evaluated with distinct strategies for different combinations of waves excited into the 2nd stage where two stages case is the same as shown in Fig. 10, 1s, 1s2p, 1s2hs, 1s2p2hs, 1s2hp, 1s2p2hp, 1s2hs2hp, and 1s2p2hs2hp stand for exciting signal with regenerated dual pumps, signal with pumps from the first stage, signal and high-order signals from the first stage with regenerated dual pumps, signal with pump and high-order signals all from the first stage, signal and high-order pumps with regenerated dual pumps, signal and pumps with high-order pumps all from the first stage, signal with high-order signals and pump and regenerated dual pumps, and all the seven waves from the first stage, respectively. The final outputs are assessed with respect to (a) and (c) the initial input at the first stage, (b) and (d) the output of the first stage, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ mnkl =Δ β mnkl +γ P mnkl =( β m + β n β k β l )+γ( P k + P l P m P n )

Metrics