Abstract

Vector optical field has recently gained interest in a variety of application fields due to its novel characteristics. Conventional approaches of generating vector optical fields have difficulties in forming highly continuous polarization and suffer from the issue of high energy utilization rates. In order to address these issues, in this study a single optical path was proposed to generate vector optical fields where the birefringent phase plate modulated a linear polarized light into a vector optical field, which was then demodulated to a non-uniform linear polarization distribution of the vector optical field by the polarization demodulation module. Both a theoretical model and numerical simulations of the vector optical field generator were developed, illustrating the relationship between the polarization distribution of the target vector optical field and the depth distribution of the birefringent phase plate. Furthermore, the birefringent phase plate with predefined surface distributions was fabricated by grayscale exposure and ion etching. The generated vector optical field was experimentally characterized, capable of producing continuous polarization with high light energy utilization ratio, consistent with simulations. This new approach may have the potential of being widely used in future studies of generating well-controlled vector optical fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineering of cylindrical vector fields with a twisted nematic spatial light modulator

Alejandra Serrano-Trujillo, Luis E. Palafox, and Víctor Ruiz-Cortés
Appl. Opt. 56(5) 1310-1316 (2017)

High-power, efficient and azimuthally polarized ytterbium-doped fiber laser

Lin Zou, Yao Yao, and Jianlang Li
Opt. Lett. 40(2) 229-232 (2015)

Recording and reconstruction of vector fields in a Fe-doped LiNbO3 crystal

Sheng-Xia Qian, Ling-Jun Kong, Yongnan Li, Chenghou Tu, and Hui-Tian Wang
Opt. Lett. 39(7) 1917-1920 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  2. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [Crossref]
  3. S. E. Skelton, M. Sergides, R. Saija, M. A. Iatì, O. M. Maragó, and P. H. Jones, “Trapping volume control in optical tweezers using cylindrical vector beams,” Opt. Lett. 38(1), 28–30 (2013).
    [Crossref] [PubMed]
  4. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
    [PubMed]
  5. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
    [Crossref] [PubMed]
  6. K. Lou, S. X. Qian, Z. C. Ren, C. Tu, Y. Li, and H. T. Wang, “Femtosecond laser processing by using patterned vector optical fields,” Sci. Rep. 3(2), 2281 (2013).
    [Crossref] [PubMed]
  7. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
    [Crossref] [PubMed]
  8. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
    [Crossref] [PubMed]
  9. Z. Rong, C. Kuang, Y. Fang, G. Zhao, Y. Xu, and X. Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams,” Opt. Commun. 354, 71–78 (2015).
    [Crossref]
  10. Y. Zhao, J. Du, S. Li, J. Liu, L. Zhu, and J. Wang, “Demonstration of a visible-light communication link employing high-base vector beam modulation/demodulation,” in Asia Communications and Photonics Conference (OSA, 2014).
    [Crossref]
  11. Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
    [Crossref] [PubMed]
  12. J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
    [Crossref] [PubMed]
  13. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  14. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990).
    [Crossref] [PubMed]
  15. K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005).
    [Crossref] [PubMed]
  16. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006).
    [Crossref] [PubMed]
  17. Q. Hu, Z. Tan, X. Weng, H. Guo, Y. Wang, and S. Zhuang, “Design of cylindrical vector beams based on the rotating Glan polarizing prism,” Opt. Express 21(6), 7343–7353 (2013).
    [Crossref] [PubMed]
  18. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(13), 78 (2007).
    [Crossref]
  19. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
    [Crossref] [PubMed]
  20. H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
    [Crossref] [PubMed]
  21. R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, “Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation,” Sci. Rep. 5(1), 10628 (2015).
    [Crossref] [PubMed]
  22. N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
    [Crossref]
  23. F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
    [Crossref]
  24. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
    [Crossref] [PubMed]
  25. P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, and J. Tian, “Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces,” Opt. Lett. 40(14), 3229–3232 (2015).
    [Crossref] [PubMed]
  26. C. Pfeiffer and A. Grbic, “Controlling vector bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
    [Crossref]
  27. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
    [Crossref]
  28. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51(10), C1–C6 (2012).
    [Crossref] [PubMed]
  29. I. Moreno, M. M. Sanchez-Lopez, K. Badham, J. A. Davis, and D. M. Cottrell, “Generation of integer and fractional vector beams with q-plates encoded onto a spatial light modulator,” Opt. Lett. 41(6), 1305–1308 (2016).
    [Crossref] [PubMed]
  30. A. Dudley, Y. Li, T. Mhlanga, M. Escuti, and A. Forbes, “Generating and measuring nondiffracting vector Bessel beams,” Opt. Lett. 38(17), 3429–3432 (2013).
    [Crossref] [PubMed]
  31. C. Oh, J. Kim, M. N. Miskiewicz, M. J. Escuti, M. W. Kudenov, and Y. Li, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958 (2015).
    [Crossref]

2016 (2)

F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

I. Moreno, M. M. Sanchez-Lopez, K. Badham, J. A. Davis, and D. M. Cottrell, “Generation of integer and fractional vector beams with q-plates encoded onto a spatial light modulator,” Opt. Lett. 41(6), 1305–1308 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (2)

2013 (5)

2012 (3)

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51(10), C1–C6 (2012).
[Crossref] [PubMed]

2011 (4)

H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
[Crossref] [PubMed]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

2005 (1)

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

2000 (1)

1995 (1)

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

1990 (1)

Al-Khowaiter, S. H.

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

Al-Muhanna, M. K.

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

Al-Saud, T. S. M.

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

Badham, K.

Bautista, G.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Beresna, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(13), 78 (2007).
[Crossref]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Brown, T.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Cardano, F.

Chang, R. S.

Chen, H.

Chen, R. P.

R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, “Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation,” Sci. Rep. 5(1), 10628 (2015).
[Crossref] [PubMed]

Chen, S.

Chen, X. Z.

F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Chen, Z.

R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, “Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation,” Sci. Rep. 5(1), 10628 (2015).
[Crossref] [PubMed]

Cheng, H.

Chew, K. H.

R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, “Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation,” Sci. Rep. 5(1), 10628 (2015).
[Crossref] [PubMed]

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Cottrell, D. M.

Davis, J. A.

de Lisio, C.

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Ding, J.

Du, J.

Y. Zhao, J. Du, S. Li, J. Liu, L. Zhu, and J. Wang, “Demonstration of a visible-light communication link employing high-base vector beam modulation/demodulation,” in Asia Communications and Photonics Conference (OSA, 2014).
[Crossref]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Dudley, A.

Escuti, M.

Escuti, M. J.

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Fang, Y.

Z. Rong, C. Kuang, Y. Fang, G. Zhao, Y. Xu, and X. Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams,” Opt. Commun. 354, 71–78 (2015).
[Crossref]

Forbes, A.

Ford, D. H.

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(13), 78 (2007).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Gerardot, B. D.

F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Grbic, A.

C. Pfeiffer and A. Grbic, “Controlling vector bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

Guo, C. S.

Guo, H.

Hao, J.

He, S.

R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, “Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation,” Sci. Rep. 5(1), 10628 (2015).
[Crossref] [PubMed]

Hnatovsky, C.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Hu, Q.

Huttunen, M. J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Iatì, M. A.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(13), 78 (2007).
[Crossref]

Jones, P. H.

Jureller, J. E.

Karimi, E.

Kauranen, M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Kazak, N. S.

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Khilo, N. A.

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

Kim, J.

Kimura, W. D.

Kontio, J. M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Krolikowski, W.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Kuang, C.

Z. Rong, C. Kuang, Y. Fang, G. Zhao, Y. Xu, and X. Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams,” Opt. Commun. 354, 71–78 (2015).
[Crossref]

Kudenov, M. W.

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Lerman, G. M.

Levy, U.

Li, J.

Li, J. S.

F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Li, P. G.

R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, “Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation,” Sci. Rep. 5(1), 10628 (2015).
[Crossref] [PubMed]

Li, S.

Y. Zhao, J. Du, S. Li, J. Liu, L. Zhu, and J. Wang, “Demonstration of a visible-light communication link employing high-base vector beam modulation/demodulation,” in Asia Communications and Photonics Conference (OSA, 2014).
[Crossref]

Li, Y.

Li, Z.

Ling, X.

Liu, J.

Y. Zhao, J. Du, S. Li, J. Liu, L. Zhu, and J. Wang, “Demonstration of a visible-light communication link employing high-base vector beam modulation/demodulation,” in Asia Communications and Photonics Conference (OSA, 2014).
[Crossref]

Liu, W.

Liu, X.

Z. Rong, C. Kuang, Y. Fang, G. Zhao, Y. Xu, and X. Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams,” Opt. Commun. 354, 71–78 (2015).
[Crossref]

Liu, Y.

Liu, Z.

Lou, K.

K. Lou, S. X. Qian, Z. C. Ren, C. Tu, Y. Li, and H. T. Wang, “Femtosecond laser processing by using patterned vector optical fields,” Sci. Rep. 3(2), 2281 (2013).
[Crossref] [PubMed]

Luo, H.

Mäkitalo, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Maragó, O. M.

Marrucci, L.

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(13), 78 (2007).
[Crossref]

Mhlanga, T.

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Miskiewicz, M. N.

Moreno, I.

Murokh, A.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Nesterov, A. V.

Ni, W. J.

Niziev, V. G.

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Oh, C.

Park, S.

Pellegrini, C.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Controlling vector bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

Qian, S. X.

K. Lou, S. X. Qian, Z. C. Ren, C. Tu, Y. Li, and H. T. Wang, “Femtosecond laser processing by using patterned vector optical fields,” Sci. Rep. 3(2), 2281 (2013).
[Crossref] [PubMed]

Ren, Z. C.

K. Lou, S. X. Qian, Z. C. Ren, C. Tu, Y. Li, and H. T. Wang, “Femtosecond laser processing by using patterned vector optical fields,” Sci. Rep. 3(2), 2281 (2013).
[Crossref] [PubMed]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(13), 78 (2007).
[Crossref]

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Rong, Z.

Z. Rong, C. Kuang, Y. Fang, G. Zhao, Y. Xu, and X. Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams,” Opt. Commun. 354, 71–78 (2015).
[Crossref]

Rosenzweig, J.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Ryzhevich, A. A.

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

Saija, R.

Sanchez-Lopez, M. M.

Santamato, E.

Scherer, N. F.

Sergides, M.

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Simonen, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Skelton, S. E.

Slussarenko, S.

Solonevich, S. V.

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

Tan, Z.

Tian, J.

Tidwell, S. C.

Toussaint, K. C.

Tu, C.

K. Lou, S. X. Qian, Z. C. Ren, C. Tu, Y. Li, and H. T. Wang, “Femtosecond laser processing by using patterned vector optical fields,” Sci. Rep. 3(2), 2281 (2013).
[Crossref] [PubMed]

Wang, H. T.

Wang, J.

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

Y. Zhao, J. Du, S. Li, J. Liu, L. Zhu, and J. Wang, “Demonstration of a visible-light communication link employing high-base vector beam modulation/demodulation,” in Asia Communications and Photonics Conference (OSA, 2014).
[Crossref]

Wang, X. L.

Wang, Y.

Wen, D. D.

F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Wen, S.

Weng, X.

Xie, B.

Xin, J. T.

F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Xu, J.

Xu, Y.

Z. Rong, C. Kuang, Y. Fang, G. Zhao, Y. Xu, and X. Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams,” Opt. Commun. 354, 71–78 (2015).
[Crossref]

Yi, X.

Youngworth, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Yu, P.

Yu, Z.

R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, “Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation,” Sci. Rep. 5(1), 10628 (2015).
[Crossref] [PubMed]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Yue, F. Y.

F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Zhang, B. F.

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Zhang, Z.

Zhao, G.

Z. Rong, C. Kuang, Y. Fang, G. Zhao, Y. Xu, and X. Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams,” Opt. Commun. 354, 71–78 (2015).
[Crossref]

Zhao, Y.

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

Y. Zhao, J. Du, S. Li, J. Liu, L. Zhu, and J. Wang, “Demonstration of a visible-light communication link employing high-base vector beam modulation/demodulation,” in Asia Communications and Photonics Conference (OSA, 2014).
[Crossref]

Zhou, X.

Zhu, L.

Y. Zhao, J. Du, S. Li, J. Liu, L. Zhu, and J. Wang, “Demonstration of a visible-light communication link employing high-base vector beam modulation/demodulation,” in Asia Communications and Photonics Conference (OSA, 2014).
[Crossref]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Zhuang, S.

ACS Photonics (1)

F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Nano Lett. (1)

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[PubMed]

Nat. Photonics (1)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(13), 78 (2007).
[Crossref]

Opt. Commun. (2)

Z. Rong, C. Kuang, Y. Fang, G. Zhao, Y. Xu, and X. Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams,” Opt. Commun. 354, 71–78 (2015).
[Crossref]

N. A. Khilo, T. S. M. Al-Saud, S. H. Al-Khowaiter, M. K. Al-Muhanna, S. V. Solonevich, N. S. Kazak, and A. A. Ryzhevich, “A high-efficient method for generating radially and azimuthally polarized bessel beams using biaxial crystals,” Opt. Commun. 285(24), 4807–4810 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005).
[Crossref] [PubMed]

X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
[Crossref] [PubMed]

P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, and J. Tian, “Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces,” Opt. Lett. 40(14), 3229–3232 (2015).
[Crossref] [PubMed]

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
[Crossref] [PubMed]

S. E. Skelton, M. Sergides, R. Saija, M. A. Iatì, O. M. Maragó, and P. H. Jones, “Trapping volume control in optical tweezers using cylindrical vector beams,” Opt. Lett. 38(1), 28–30 (2013).
[Crossref] [PubMed]

A. Dudley, Y. Li, T. Mhlanga, M. Escuti, and A. Forbes, “Generating and measuring nondiffracting vector Bessel beams,” Opt. Lett. 38(17), 3429–3432 (2013).
[Crossref] [PubMed]

I. Moreno, M. M. Sanchez-Lopez, K. Badham, J. A. Davis, and D. M. Cottrell, “Generation of integer and fractional vector beams with q-plates encoded onto a spatial light modulator,” Opt. Lett. 41(6), 1305–1308 (2016).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Appl. (1)

C. Pfeiffer and A. Grbic, “Controlling vector bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

Phys. Rev. Lett. (3)

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Sci. Rep. (2)

R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. He, “Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation,” Sci. Rep. 5(1), 10628 (2015).
[Crossref] [PubMed]

K. Lou, S. X. Qian, Z. C. Ren, C. Tu, Y. Li, and H. T. Wang, “Femtosecond laser processing by using patterned vector optical fields,” Sci. Rep. 3(2), 2281 (2013).
[Crossref] [PubMed]

Other (1)

Y. Zhao, J. Du, S. Li, J. Liu, L. Zhu, and J. Wang, “Demonstration of a visible-light communication link employing high-base vector beam modulation/demodulation,” in Asia Communications and Photonics Conference (OSA, 2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the vector optical field generator based on a single optical path where a linear polarized light was modulated to a light field containing polarization information of multiple target vectors by a birefringent phase plate and then demodulated to a non-uniform linearly polarization distribution of the vector optical field by a polarization demodulation module.

Fig. 2
Fig. 2

Schematic of the numerical simulations include (a) polarization distribution of the radial vector optical light and (b) depth distribution of the birefringent phase plate.

Fig. 3
Fig. 3

Numerical simulations of light fields generated by passing through the polarizers with a group of angles including (a) no analyzer, (b) 0°, (c) 90°, (d) 45° and (e) 135°.

Fig. 4
Fig. 4

The simulated distributions of the light field after the output light passed through the analyzer in a function of analyzers’ angels (θ) and birefringent phase plate depth (h) including (a1) h = h0, θ = 0°; (a2) h = h0, θ = 90°; (a3) h = h0, θ = 45°; (a4) h = h0, θ = 135°; (b1) h = 1.2h0, θ = 0°; (b2) h = 1.2h0, θ = 90°; (b3) h = 1.2h0, θ = 45°; (b4) h = 1.2h0, θ = 135°; (c1) h = 0.8h0, θ = 0°; (c2) h = 0.8h0, θ = 90°; (c3) h = 0.8h0, θ = 45°; and (c4) h = 0.8h0, θ = 135°.

Fig. 5
Fig. 5

(a) Gray-scale mask and (b) fabrication of the proposed birefringent phase plate.

Fig. 6
Fig. 6

(a) Step heights and (b) roughness of the birefringent phase plate tested by step profile.

Fig. 7
Fig. 7

Experimental setup of the single optical path to generate vector optical fields.

Fig. 8
Fig. 8

The experiment results: (a)Intensity distribution of the obtained vector optical field ;(b)comparision of experimentally obtained intendity distribution with the theory results; and the obtained optical fields with a group of analyzer angles including (d) 0°, (e) 90°, (f) 45° and (g) 135°.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E i =( cos( 45 ) sin( 45 ) )= 2 2 ( 1 1 ).
G 0 = e i δ 1 ( x,y ) ( 1 0 0 e i δ 2 ( x,y ) ).
G 1 = 2 2 ( 1 1 1 1 ); G 2 =( 1 0 0 i ).
E o = G 2 G 1 G 0 E i = e i( δ 1 ( x,y )+ δ 2 ( x,y ) 2 ) ( cos( δ 2 ( x,y ) /2 ) sin( δ 2 ( x,y ) /2 ) ).
E( x,y )=( cos( θ( x,y ) ) sin( θ( x,y ) ) ).
θ( x,y )= δ 2 ( x,y ) /2 δ 2 ( x,y )=2θ( x,y ).
h( x,y )= λ δ 2 ( x,y ) 2π( n e n o ) .
h( x,y )= λθ( x,y ) π( n e n o ) .
E( x,y )=( cos( θ( x,y ) ) sin( θ( x,y ) ) );θ( x,y )=arccos( x x 2 + y 2 ).
h( x,y )= λarccos( x/ x 2 + y 2 ) π( n e n o ) .

Metrics