Abstract

A helical surface relief can be created in an azo-polymer film simply by illuminating circularly polarized light with spin angular momentum and without any orbital angular momentum. The helicity of the surface relief is determined by the sign of the spin angular momentum. The illumination of circularly polarized light induces orbital motion of the azo-polymer to shape the helical surface relief as an intermediate form; a subsequent transformation to a non-helical bump-shaped relief with a central peak creates a final form with additional exposure time. The mechanism for the formation of such a helical surface relief was also theoretically analyzed using the formula for the optical radiation force in a homogeneous and isotropic material.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam

Yiqiong Zhao, David Shapiro, David Mcgloin, Daniel T. Chiu, and Stefano Marchesini
Opt. Express 17(25) 23316-23322 (2009)

Diffraction efficiency increase by corona discharge in photoinduced surface-relief gratings on an azo polymer film

Katsuhiro Munakata, Kenji Harada, Hitoshi Anji, Masahide Itoh, Toyohiko Yatagai, and Shinsuke Umegaki
Opt. Lett. 26(1) 4-6 (2001)

Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations

Manman Li, Shaohui Yan, Baoli Yao, Yansheng Liang, and Peng Zhang
Opt. Express 24(18) 20604-20612 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Orlandi and W. Sierand, “Model for the direct photo-isomerization of stilbene,” Chem. Phys. Lett. 30(3), 352–354 (1975).
    [Crossref]
  2. L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
    [Crossref]
  3. L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
    [Crossref]
  4. L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75(6-7), 671–676 (2002).
    [Crossref]
  5. N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
    [Crossref]
  6. C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100(21), 8836–8842 (1996).
    [Crossref]
  7. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
    [Crossref]
  8. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer film,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  9. T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
    [Crossref]
  10. J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
    [Crossref]
  11. A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
    [Crossref] [PubMed]
  12. R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13(23), 1805–1810 (2001).
    [Crossref]
  13. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [Crossref] [PubMed]
  14. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  15. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  16. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
    [Crossref]
  17. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88(25), 257901 (2002).
    [Crossref] [PubMed]
  18. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  19. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  20. T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
    [Crossref]
  21. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
    [Crossref] [PubMed]
  22. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  23. I. B. Djordjevic, “Heterogeneous transparent optical networking based on coded OAM modulation,” IEEE Photonics J. 3(3), 531–537 (2011).
    [Crossref]
  24. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
    [Crossref] [PubMed]
  25. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
    [Crossref] [PubMed]
  26. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref] [PubMed]
  27. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref] [PubMed]
  28. F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
    [Crossref] [PubMed]
  29. F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
    [Crossref]
  30. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
    [Crossref] [PubMed]
  31. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
    [Crossref] [PubMed]
  32. J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
    [Crossref] [PubMed]
  33. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [Crossref] [PubMed]
  34. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
    [Crossref] [PubMed]
  35. D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
    [Crossref]
  36. E. Brasselet, “Singular optical manipulation of birefringent elastic media using nonsingular beams,” Opt. Lett. 34(20), 3229–3231 (2009).
    [Crossref] [PubMed]
  37. E. Brasselet, “Singular optical reordering of liquid crystals using Gaussian beams,” J. Opt. 12(12), 124005 (2010).
    [Crossref]
  38. M. E. Ketara and E. Brasselet, “Observation of self-induced optical vortex precession,” Phys. Rev. Lett. 110(23), 233603 (2013).
    [Crossref] [PubMed]
  39. D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
    [Crossref] [PubMed]
  40. Z. Yao, H. W. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402(6759), 273–276 (1999).
    [Crossref]
  41. K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19(27), 26132–26149 (2011).
    [Crossref] [PubMed]
  42. S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
    [Crossref]
  43. J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
    [Crossref]
  44. S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
    [Crossref]
  45. X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
    [Crossref]
  46. J. J. A. Couture and R. A. Lessard, “Modulation transfer function measurements for thin layers of azo dyes in PVA matrix used as an optical recording material,” Appl. Opt. 27(16), 3368–3374 (1988).
    [Crossref] [PubMed]

2016 (4)

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
[Crossref]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
[Crossref]

2015 (2)

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

2014 (1)

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

2013 (2)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

M. E. Ketara and E. Brasselet, “Observation of self-induced optical vortex precession,” Phys. Rev. Lett. 110(23), 233603 (2013).
[Crossref] [PubMed]

2012 (3)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (3)

I. B. Djordjevic, “Heterogeneous transparent optical networking based on coded OAM modulation,” IEEE Photonics J. 3(3), 531–537 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19(27), 26132–26149 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

2008 (1)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

2007 (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (1)

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

2004 (1)

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

2003 (2)

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

2002 (3)

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75(6-7), 671–676 (2002).
[Crossref]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88(25), 257901 (2002).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

2001 (2)

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13(23), 1805–1810 (2001).
[Crossref]

2000 (1)

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

1999 (3)

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Z. Yao, H. W. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402(6759), 273–276 (1999).
[Crossref]

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

1998 (2)

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

1996 (2)

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100(21), 8836–8842 (1996).
[Crossref]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

1995 (2)

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer film,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

1993 (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1988 (1)

1975 (1)

G. Orlandi and W. Sierand, “Model for the direct photo-isomerization of stilbene,” Chem. Phys. Lett. 30(3), 352–354 (1975).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Alonso, M. A.

Ambrosio, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Balasubramanian, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

Balents, L.

Z. Yao, H. W. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402(6759), 273–276 (1999).
[Crossref]

Barada, D.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Barnett, S. M.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88(25), 257901 (2002).
[Crossref] [PubMed]

Barrett, C. J.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100(21), 8836–8842 (1996).
[Crossref]

Bartkiewicz, S.

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer film,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Bazuin, C. G.

X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bian, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Bieringer, T.

R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13(23), 1805–1810 (2001).
[Crossref]

Bin, J.

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

Bliokh, K. Y.

Borbone, F.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Bradshaw, D.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Brasselet, E.

M. E. Ketara and E. Brasselet, “Observation of self-induced optical vortex precession,” Phys. Rev. Lett. 110(23), 233603 (2013).
[Crossref] [PubMed]

E. Brasselet, “Singular optical reordering of liquid crystals using Gaussian beams,” J. Opt. 12(12), 124005 (2010).
[Crossref]

E. Brasselet, “Singular optical manipulation of birefringent elastic media using nonsingular beams,” Opt. Lett. 34(20), 3229–3231 (2009).
[Crossref] [PubMed]

Bretschneider, S.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

Callender, C. L.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

Chujo, K.

Claridge, J. B.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Courtial, J.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88(25), 257901 (2002).
[Crossref] [PubMed]

Couture, J. J. A.

Cussen, E. J.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Dainty, C.

Dekker, C.

Z. Yao, H. W. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402(6759), 273–276 (1999).
[Crossref]

Dholakia, K.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Djordjevic, I. B.

I. B. Djordjevic, “Heterogeneous transparent optical networking based on coded OAM modulation,” IEEE Photonics J. 3(3), 531–537 (2011).
[Crossref]

Dolinar, Y. S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dragostinova, V.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Eggeling, C.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Franke-Arnold, S.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88(25), 257901 (2002).
[Crossref] [PubMed]

Fujii, M.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

Fukuchi, N.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Hagen, R.

R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13(23), 1805–1810 (2001).
[Crossref]

Hamazaki, J.

Harada, K.

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

Hell, S. W.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

Hidai, H.

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
[Crossref]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

Hirose, T.

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Hoshino, K.

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Hvilsted, S.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

Igasaki, Y.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

Iketaki, Y.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

Indebetouw, G.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

Ishiuchi, S.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

Juman, G.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

Kato, R.

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

Kawata, S.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Ketara, M. E.

M. E. Ketara and E. Brasselet, “Observation of self-induced optical vortex precession,” Phys. Rev. Lett. 110(23), 233603 (2013).
[Crossref] [PubMed]

Kim, D. Y.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Kim, J.-Y.

J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Kobayashi, Y.

Kumar, J.

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Lara, D.

Leach, J.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88(25), 257901 (2002).
[Crossref] [PubMed]

Lee, T. S.

J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Lessard, R. A.

Li, L.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Li, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Li, X.

J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Liu, W.

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Maddalena, P.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Marrucci, L.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Matharu, A.

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75(6-7), 671–676 (2002).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Miyamoto, K.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Morita, R.

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
[Crossref]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
[Crossref] [PubMed]

Nakamura, K.

Natansohn, A.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer film,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Natansohn, A. L.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100(21), 8836–8842 (1996).
[Crossref]

Nedelchev, L.

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75(6-7), 671–676 (2002).
[Crossref]

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

Nikolova, L.

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75(6-7), 671–676 (2002).
[Crossref]

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Oates, W. S.

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

Ohno, S.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Okida, M.

Omatsu, T.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
[Crossref]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

Orlandi, G.

G. Orlandi and W. Sierand, “Model for the direct photo-isomerization of stilbene,” Chem. Phys. Lett. 30(3), 352–354 (1975).
[Crossref]

Ostrovskaya, E. A.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88(25), 257901 (2002).
[Crossref] [PubMed]

Paterson, J.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

Pellerin, C.

X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
[Crossref]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Petrova, T.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

Postma, H. W.

Z. Yao, H. W. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402(6759), 273–276 (1999).
[Crossref]

Prior, T. J.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Ramanujam, P. S.

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75(6-7), 671–676 (2002).
[Crossref]

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

Ren, Y. X.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Robitaille, L.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

Rochon, P.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer film,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Rochon, P. L.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100(21), 8836–8842 (1996).
[Crossref]

Rodríguez-Herrera, O. G.

Rosseinsky, M. J.

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Roviello, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Sabat, R. G.

X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
[Crossref]

Sakai, M.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

Samuelson, L.

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

Sierand, W.

G. Orlandi and W. Sierand, “Model for the direct photo-isomerization of stilbene,” Chem. Phys. Lett. 30(3), 352–354 (1975).
[Crossref]

Sobolewska, A.

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Takahashi, F.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Takizawa, S.

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tanda, S.

Tang, H. X.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Todorov, T.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tomova, N.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Tripathy, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Tripathy, S. K.

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Vapaavuori, J.

X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
[Crossref]

Viswanathan, N. K.

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, X.

X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
[Crossref]

X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
[Crossref]

Watabe, M.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

Watanabe, T.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

Williams, J.

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Williams, J. M.

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

Williams, S. B. J.

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Willner, A. E.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Yamamoto, K.

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

Yamane, K.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yao, Z.

Z. Yao, H. W. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402(6759), 273–276 (1999).
[Crossref]

Yoshida, I.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zawada, J.

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, “Design, chirality, and flexibility in nanoporous molecule-based materials,” Acc. Chem. Res. 38(4), 273–282 (2005).
[Crossref] [PubMed]

Adv. Mater. (1)

R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13(23), 1805–1810 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75(6-7), 671–676 (2002).
[Crossref]

Appl. Phys. Lett. (7)

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett. 77(5), 657–659 (2000).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer film,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

J. Kumar, L. Li, X. Li, J.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Chem. Phys. Lett. (1)

G. Orlandi and W. Sierand, “Model for the direct photo-isomerization of stilbene,” Chem. Phys. Lett. 30(3), 352–354 (1975).
[Crossref]

IEEE Photonics J. (1)

I. B. Djordjevic, “Heterogeneous transparent optical networking based on coded OAM modulation,” IEEE Photonics J. 3(3), 531–537 (2011).
[Crossref]

J. Appl. Phys. (1)

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86(8), 4498–4508 (1999).
[Crossref]

J. Mater. Chem. (1)

N. K. Viswanathan, D. Y. Kim, S. B. J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

J. Mod. Opt. (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

J. Opt. (1)

E. Brasselet, “Singular optical reordering of liquid crystals using Gaussian beams,” J. Opt. 12(12), 124005 (2010).
[Crossref]

J. Opt. A. (1)

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A. 3(4), 304–310 (2001).
[Crossref]

J. Phys. Chem. (1)

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100(21), 8836–8842 (1996).
[Crossref]

Langmuir (1)

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

Macromolecules (1)

X. Wang, J. Vapaavuori, X. Wang, R. G. Sabat, C. Pellerin, and C. G. Bazuin, “Influence of supramolecular interaction type on photoresponsive azopolymer complexes: a surface relief grating formation study,” Macromolecules 49(13), 4923–4934 (2016).
[Crossref]

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, Y. S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Nature (2)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Z. Yao, H. W. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402(6759), 273–276 (1999).
[Crossref]

Opt. Commun. (1)

T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe, and M. Fujii, “Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram,” Opt. Commun. 228(4-6), 279–283 (2003).
[Crossref]

Opt. Eng. (1)

T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43(5), 1136–1143 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
[Crossref] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88(25), 257901 (2002).
[Crossref] [PubMed]

M. E. Ketara and E. Brasselet, “Observation of self-induced optical vortex precession,” Phys. Rev. Lett. 110(23), 233603 (2013).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Phys. Stat. Solid. A. (1)

F. Takahashi, S. Takizawa, H. Hidai, K. Miyamoto, R. Morita, and T. Omatsu, “Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures,” Phys. Stat. Solid. A. 213(4), 1063–1068 (2016).
[Crossref]

Sci. Rep. (3)

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Coordinate systems for a formula of optical radiation force and irradiated optical field. (b) Spatial distribution of the optical radiation forces produced by Gaussian beam with spin angular momenta of (b)s = 1, (c)s = −1, and (d)s = 0.

Fig. 2
Fig. 2

(a) Chemical structure of the azo-polymer used in our experiments, termed Poly Orange Tom-1. (b) Absorption spectrum of the azo-polymer in a visible region.

Fig. 3
Fig. 3

Atomic force microscope images of helical surface reliefs formed by (a) right- and (b) left-handed circularly polarized Gaussian beam illumination. Temporal evolution of the (c) right- and (d) left-handed surface relief formation. (e) Right-handed helical surface relief formation formed by illumination of circularly polarized optical vortex with total angular momentum of J = 2. (f) Relief (left) and its cross-section (right). Definitions of diameter and height of the relief are illustrated in the cross-section. (g) Diameter- and (h) height- of the surface relief measured at various exposure times.

Fig. 4
Fig. 4

Experimental (b) diameter- and height- of helical surface relief structured by irradiation of a circularly polarized light with exposure time of 2 seconds as a function of NA of an objective lens. (c) Build-up time and duration of the helical surface relief at various NAs of an objective lens. All experiments were performed at a focused spot intensity of 3 kW/cm2.

Fig. 5
Fig. 5

Atomic force microscope images of surface reliefs formed by (a) right- and (b) left-handed circularly polarized Gaussian beam illumination. The intensity of a focused Gaussian beam was then measured to be ~0.3 kW/cm2.

Fig. 6
Fig. 6

(a) Atomic force microscope images of surface reliefs formed by a linearly polarized light. (b) Temporal evolution of the surface relief formation by linearly polarized light illumination.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F( r,ϕ )= ε 0 χ r 4 { 1 s 2 2 A ( r ) 2 r ( cosϕ e x +sinϕ e y ) +( 1 2 A ( r ) 2 r s A ( r ) 2 r ) e r } + ε 0 χ i 4 { 1 s 2 A ( r ) 2 r ( sinϕ e x +cosϕ e y ) +( A ( r ) 2 r s 2 A ( r ) 2 r ) e ϕ },
A(r)exp( r 2 ω 0 2 ),
F( r,ϕ )= ε 0 χ r 2 { ( r ω 0 2 exp( 2 r 2 ω 0 2 ) ) e r }+s ε 0 χ i 2 { ( r ω 0 2 exp( 2 r 2 ω 0 2 ) ) e ϕ }.
F( r,ϕ )= ε 0 χ r 2 { r ω 0 2 exp( 2 r 2 ω 0 2 )( cosϕ e x +sinϕ e y ) +( r ω 0 2 exp( 2 r 2 ω 0 2 ) ) e r }.

Metrics