Abstract

Multi-Joule level stimulated Brillouin scattering (SBS) pulse compression below the acoustic phonon lifetime is demonstrated with a energy-scalable generator-amplifier setup. Single-pass compression of pulses longer than 20τB (τB as phonon lifetime) to as short as 0.5τB with ~100 mJ pulse energy is realized from the generator, by choosing the focusing length to match approximately with the full length at half maximum of the input Gaussian pulses. The interaction length is identified, both experimentally and numerically, as the key parameter in achieving sub-phonon lifetime pulse compression, with its main mechanism being the steepening of the Stokes pulse trailing edge via energy exchange process. After combining the generator with an amplifier that involves only collimated beams and serves as energy booster, the compression of 9 ns, 2 J pulses at 532 nm into 170 ps, 1.3 J per pulse is achieved in water, with very good stability in both pulse energy and duration. This work demonstrates for the first time the efficient high-energy SBS sub-phonon lifetime pulse compression, and paves a way to the reliable generation of sub-200 ps laser pulses with Joule-level energy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime

Zhaohong Liu, Yulei Wang, Yirui Wang, Sensen Li, Zhenxu Bai, Dianyang Lin, Weiming He, and Zhiwei Lu
Opt. Express 26(5) 5701-5710 (2018)

Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering

Zhaohong Liu, Yulei Wang, Zhenxu Bai, Yirui Wang, Duo Jin, Hongli Wang, Hang Yuan, Dianyang Lin, and Zhiwei Lu
Opt. Express 26(18) 23051-23060 (2018)

Optimizing sub-ns pulse compression for high energy application

Xiaozhen Xu, Chengyong Feng, and Jean-Claude Diels
Opt. Express 22(11) 13904-13915 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19, 011003 (2017).
    [Crossref]
  2. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5, 516–518 (1980).
    [Crossref] [PubMed]
  3. Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65, 2460–2463 (1994).
    [Crossref]
  4. C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
    [Crossref]
  5. A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45, 1607–1611 (2006).
    [Crossref]
  6. H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
    [Crossref]
  7. M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency-shifted loopback,” IEEE Photon. Technol. Lett. 29, 3–6 (2017).
    [Crossref]
  8. H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17, 13654–13662 (2009).
    [Crossref] [PubMed]
  9. Y. Wang, X. Zhu, Z. Lu, and H. Zhang, “Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme,” Opt. Express 23, 23318–23328 (2015).
    [Crossref] [PubMed]
  10. C. Feng, X. Xu, and J.-C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39, 3367–3370 (2014).
    [Crossref] [PubMed]
  11. X. Xu, C. Feng, and J.-C. Diels, “Optimizing sub-ns pulse compression for high energy application,” Opt. Express 22, 13904–13915 (2014).
    [Crossref] [PubMed]
  12. S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
    [Crossref]
  13. I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
    [Crossref]
  14. C. Feng, J.-C. Diels, X. Xu, and L. Arissian, “Ring-shaped backward stimulated Raman scattering driven by stimulated Brillouin scattering,” Opt. Express 23, 17035–17045 (2015).
    [Crossref] [PubMed]
  15. D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200 ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
    [Crossref]
  16. R. R. Buzyalis, A. S. Dementjev, and E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
    [Crossref]
  17. R. Fedosejevs and A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
    [Crossref]
  18. V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, and V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905 (1983).
    [Crossref]
  19. M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
    [Crossref]
  20. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic Press, 2006).
  21. O. Chalus, A. Sukhinin, A. Aceves, and J.-C. Diels, “Propagation of non-diffracting intense ultraviolet beams,” Opt. Commun. 281, 3356–3360 (2008).
    [Crossref]
  22. J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
    [Crossref]
  23. X. Xu and J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAG laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
    [Crossref]
  24. C. Feng, X. Xu, and J.-C. Diels, “Spatio–temporal characterization of pulses obtained from a high-energy sub-nanosecond laser system,” Appl. Opt. 55, 1603–1612 (2016).
    [Crossref] [PubMed]
  25. X. Xu, “High power pulse UV source development and its applications,” Ph.D. Dissertation (UNM2014).
  26. R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, 2008).
  27. H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36, 3739–3744 (1997).
    [Crossref] [PubMed]
  28. J.-Z. Zhang, G. Chen, and R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108–115 (1990).
    [Crossref]
  29. W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
    [Crossref]

2017 (2)

M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency-shifted loopback,” IEEE Photon. Technol. Lett. 29, 3–6 (2017).
[Crossref]

E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19, 011003 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (4)

C. Feng, X. Xu, and J.-C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39, 3367–3370 (2014).
[Crossref] [PubMed]

X. Xu, C. Feng, and J.-C. Diels, “Optimizing sub-ns pulse compression for high energy application,” Opt. Express 22, 13904–13915 (2014).
[Crossref] [PubMed]

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

X. Xu and J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAG laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
[Crossref]

2012 (1)

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

2009 (1)

2008 (1)

O. Chalus, A. Sukhinin, A. Aceves, and J.-C. Diels, “Propagation of non-diffracting intense ultraviolet beams,” Opt. Commun. 281, 3356–3360 (2008).
[Crossref]

2007 (1)

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[Crossref]

2006 (1)

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45, 1607–1611 (2006).
[Crossref]

1999 (2)

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200 ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

1997 (2)

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[Crossref]

H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36, 3739–3744 (1997).
[Crossref] [PubMed]

1994 (2)

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65, 2460–2463 (1994).
[Crossref]

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[Crossref]

1990 (1)

1985 (2)

R. R. Buzyalis, A. S. Dementjev, and E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[Crossref]

R. Fedosejevs and A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[Crossref]

1983 (2)

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, and V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905 (1983).
[Crossref]

M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[Crossref]

1980 (1)

Aceves, A.

O. Chalus, A. Sukhinin, A. Aceves, and J.-C. Diels, “Propagation of non-diffracting intense ultraviolet beams,” Opt. Commun. 281, 3356–3360 (2008).
[Crossref]

Arissian, L.

Boyd, R. W.

R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, 2008).

Brown, B.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65, 2460–2463 (1994).
[Crossref]

Buzyalis, R. R.

R. R. Buzyalis, A. S. Dementjev, and E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[Crossref]

Chalus, O.

O. Chalus, A. Sukhinin, A. Aceves, and J.-C. Diels, “Propagation of non-diffracting intense ultraviolet beams,” Opt. Commun. 281, 3356–3360 (2008).
[Crossref]

Chang, R. K.

Chen, G.

Damzen, M.

M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[Crossref]

Dane, C.

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[Crossref]

Dementjev, A. S.

R. R. Buzyalis, A. S. Dementjev, and E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[Crossref]

Diels, J.-C.

Fan, R.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Fedosejevs, R.

R. Fedosejevs and A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[Crossref]

Feng, C.

Fujinoki, A.

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[Crossref]

Fujita, H.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17, 13654–13662 (2009).
[Crossref] [PubMed]

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[Crossref]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45, 1607–1611 (2006).
[Crossref]

H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36, 3739–3744 (1997).
[Crossref] [PubMed]

Garmire, E.

E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19, 011003 (2017).
[Crossref]

Gorbunov, V. A.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, and V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905 (1983).
[Crossref]

Guo, X.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Hackel, L.

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[Crossref]

Hasi, W.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Hatae, T.

He, W.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Hogervorst, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200 ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[Crossref]

Hon, D. T.

Hutchinson, H.

M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[Crossref]

Kitamura, S.

Kmetik, V.

Kosenko, E. K.

R. R. Buzyalis, A. S. Dementjev, and E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[Crossref]

Li, X.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Lin, D.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Lu, Z.

Lü, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Majewski, W.

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200 ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

Mamin, A.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65, 2460–2463 (1994).
[Crossref]

Matsumoto, M.

M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency-shifted loopback,” IEEE Photon. Technol. Lett. 29, 3–6 (2017).
[Crossref]

Matsuyama, T.

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

Mitra, A.

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45, 1607–1611 (2006).
[Crossref]

Miyamoto, S.

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

Miyanaga, N.

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

Miyashita, G.

M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency-shifted loopback,” IEEE Photon. Technol. Lett. 29, 3–6 (2017).
[Crossref]

Nakatsuka, M.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17, 13654–13662 (2009).
[Crossref] [PubMed]

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[Crossref]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45, 1607–1611 (2006).
[Crossref]

H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36, 3739–3744 (1997).
[Crossref] [PubMed]

Neshev, D.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200 ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

Neuman, W.

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[Crossref]

Nielsen, P.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65, 2460–2463 (1994).
[Crossref]

Nizienko, Y.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65, 2460–2463 (1994).
[Crossref]

Offenberger, A.

R. Fedosejevs and A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[Crossref]

Ogino, J.

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

Papernyi, S. B.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, and V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905 (1983).
[Crossref]

Petrov, V. F.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, and V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905 (1983).
[Crossref]

Qiao, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic Press, 2006).

Schiemann, S.

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[Crossref]

Startsev, V. R.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, and V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905 (1983).
[Crossref]

Sueda, K.

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

Sukhinin, A.

O. Chalus, A. Sukhinin, A. Aceves, and J.-C. Diels, “Propagation of non-diffracting intense ultraviolet beams,” Opt. Commun. 281, 3356–3360 (2008).
[Crossref]

Tsubakimoto, K.

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

Ubachs, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200 ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[Crossref]

Ueda, T.

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[Crossref]

Velchev, I.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200 ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

Wang, Y.

Xu, X.

Yamanaka, T.

Yoshida, H.

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17, 13654–13662 (2009).
[Crossref] [PubMed]

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[Crossref]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45, 1607–1611 (2006).
[Crossref]

H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36, 3739–3744 (1997).
[Crossref] [PubMed]

Yoshida, K.

Zhang, H.

Zhang, J.-Z.

Zhong, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Zhu, X.

Appl. Opt. (2)

Appl. Phys. B (2)

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200 ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

X. Xu and J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAG laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
[Crossref]

Appl. Phys. Express (1)

J. Ogino, S. Miyamoto, T. Matsuyama, K. Sueda, H. Yoshida, K. Tsubakimoto, and N. Miyanaga, “Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression,” Appl. Phys. Express 7, 122702 (2014).
[Crossref]

IEEE J. Quantum Electron. (5)

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[Crossref]

R. Fedosejevs and A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[Crossref]

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency-shifted loopback,” IEEE Photon. Technol. Lett. 29, 3–6 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45, 1607–1611 (2006).
[Crossref]

Laser Part. Beams (1)

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[Crossref]

New J. Phys. (1)

E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19, 011003 (2017).
[Crossref]

Opt. Commun. (2)

O. Chalus, A. Sukhinin, A. Aceves, and J.-C. Diels, “Propagation of non-diffracting intense ultraviolet beams,” Opt. Commun. 281, 3356–3360 (2008).
[Crossref]

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65, 2460–2463 (1994).
[Crossref]

Sov. J. Quantum Electron. (2)

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, and V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905 (1983).
[Crossref]

R. R. Buzyalis, A. S. Dementjev, and E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[Crossref]

Other (3)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic Press, 2006).

X. Xu, “High power pulse UV source development and its applications,” Ph.D. Dissertation (UNM2014).

R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of energy-scalable generator-amplifier setup for high-energy sub-phonon lifetime SBS pulse compression. Both SBS generator and amplifier cells are 2.5 m long. HW: Half Wave-plate; QW: Quarter Wave-plate; TP: Thin-film Polarizer; L: Plano-convex lens; TS: Translation Stage; PD: Photodetector.
Fig. 2
Fig. 2 SBS pulse compression of 9 ns (FWHM) Gaussian pulses in FC72 at 1064 nm; (a) Experimentally measured and (b) numerically simulated dependence of compressed pulse duration on the input pulse energy with two different focusing/interaction lengths, which are expressed in fraction of the pulse Full Length at Half Maximum [FWHM=(c/n) τp]; (c)-(e) Experimentally measured compressed pulses obtained with different initial conditions as marked out in (a);
Fig. 3
Fig. 3 SBS pulse compression of nanosecond Gaussian pulses in water at 532 nm with a focusing length of 220 cm; (a) Experimentally measured dependence of compressed pulse duration on the input pulse energy with two different input pulse durations; The inset shows the corresponding energy efficiency. (b)-(e) Compressed pulse shapes with different initial conditions as labeled in (a). Compressed pulses presented in (e), which are both normalized to the same peak of the pulse with higher peak intensity, are obtained from two different laser shots at the input pump pulse energy of 400 mJ. Two pulses are temporally shifted for better visibility.
Fig. 4
Fig. 4 SBS pulse compression of nanosecond Gaussian pulses in water at 532 nm, with focusing length of 220 cm being chosen to match with experimental condition. (a) Simulated dependence of compressed pulse duration on the input pulse energy with two different input pulse durations; (b)-(e) Compressed pulse shapes with different initial conditions as labeled in (a). Two pulses presented in (e), which are normalized to the same peak of the pulse (i.e., the peak of pulse 1) with higher peak intensity, are obtained with two different input pump pulse energies. Two pulses are temporally shifted for better visibility. The inset illustrates the energy exchange between pump and Stokes pulses inside the SBS cell, at the input energy of 550 mJ.
Fig. 5
Fig. 5 Simulation on SBS pulse compression in water from the generator, demonstrating the dependence of compressed pulse duration on both focusing length and input pulse energy with input pulse duration of (a) 9 ns and (b) 7 ns. The input beam diameter is chosen to be 30 mm for both cases. The gray planes in (a) and (b) indicate the minimum compressed pulse duration of 140 ps and 110 ps, respectively. The two white curves in (a) label the pulse duration of 160 ps, while the two white curves in (b) label the pulse duration of 125 ps. Therefore, the valley areas within the white curves in (a) and (b) contain the compressed pulse durations within the range of 140 ps-160 ps and 110 ps-125 ps, respectively. (c) A schematic comparing the beam cross section within the SBS interaction region for the same inputs focused by two lenses with different focusing length (≥FLHM). The beam cross section within the major SBS interaction region is smaller at longer focusing length.
Fig. 6
Fig. 6 Experimentally measured amplified Stokes pulse energy (left) and the corresponding overall energy efficiency (right). The insets show typical pulse shape of the amplified Stokes pulses at corresponding generator input (amplifier pump) energy of 120 mJ (1.88 J), 180 mJ (1.82 J) and 240 mJ (1.76 J), respectively. The corresponding Stokes seed pulse durations are 380 ps, 260 ps and 200 ps, respectively

Tables (1)

Tables Icon

Table 1 Parameters used in simulations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ˜ 1 ( t , z ) = 1 2 1 ( t , z ) e i ( ω 1 t k 1 z ) + c . c .
E ˜ 2 ( t , z ) = 1 2 2 ( t , z ) e i ( ω 2 t + k 2 z ) + c . c .
ρ ˜ ( t , z ) = ρ 0 + [ 1 2 ρ ( t , z ) e i ( Ω B t q B z ) + c . c . ]
1 + c n 1 z = i γ e ω 4 n 2 ρ 0 ρ 2 = i 2 ϵ 0 c 2 g B Γ B ρ 2
2 t c n 2 z = i γ e ω 4 n 2 ρ 0 ρ * 1 = i 2 ϵ 0 c 2 g B Γ B ρ * 1
2 ρ ( z , t ) t 2 + ( Γ B + 2 i Ω B ) ρ ( z , t ) t + i Ω B Γ B ρ ( z , t ) = 1 2 Ω B 1 2 *

Metrics