Abstract

We demonstrated Graded Cavity Resonator Integrated Grating Filters (G-CRIGFs) that are narrowband spectral reflectors, spectrally tunable over more than 40 nm around 850 nm using a spatial gradient. A simple analytical model is introduced and validated experimentally to determine spectral performance of G-CRIGFs from the spectral properties of a standard Cavity Resonator Integrated Grating Filter (CRIGF).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared cavity resonator integrated grating filters

S. Augé, S. Gluchko, A. L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, A. Monmayrant, and O. Gauthier-Lafaye
Opt. Express 26(21) 27014-27020 (2018)

High-order modes in cavity-resonator-integrated guided-mode resonance filters (CRIGFs)

R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel, and B. Cluzel
J. Opt. Soc. Am. A 32(11) 1973-1981 (2015)

High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter

X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye
Opt. Express 20(8) 9322-9327 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20, 1444–1449 (2012).
    [Crossref] [PubMed]
  2. S. Ura, J. Inoue, K. Kintaka, and Y. Awatsuji, “Proposal of small-aperture guided-mode resonance filter,” in 2011 13th International Conference on Transparent Optical Networks (2011), pp. 1–4.
    [Crossref]
  3. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997).
    [Crossref]
  4. R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel, and B. Cluzel, “High-order modes in cavity-resonator-integrated guided-mode resonance filters (crigfs),” J. Opt. Soc. Am. A 32, 1973–1981 (2015).
    [Crossref]
  5. N. Rassem, A.-L. Fehrembach, and E. Popov, “Waveguide mode in the box with an extraordinary flat dispersion curve,” J. Opt. Soc. Am. A 32, 420–430 (2015).
    [Crossref]
  6. X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express 20, 9322–9327 (2012).
    [Crossref] [PubMed]
  7. K. Kintaka, K. Asai, K. Yamada, J. Inoue, and S. Ura, “Grating-position-shifted cavity-resonator-integrated guided-mode resonance filter”, IEEE Photonics Technol. Lett. 29, 201–204 (2017).
    [Crossref]
  8. K. Yanagida, K. Mori, M. Nakata, J. Inoue, S. Ura, and K. Kintaka, “Characterization of CRIGF integrated on DBR substrate,” in CPMT Symposium Japan (ICSJ) (IEEE, 2016), pp. 173–176.
  9. P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express 17, 20365–20375 (2009).
    [Crossref] [PubMed]
  10. K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
    [Crossref]
  11. P. C. Chaumet, G. Demésy, O. Gauthier-Lafaye, A. Sentenac, E. Popov, and A.-L. Fehrembach, “Electromagnetic modeling of large subwavelength-patterned highly resonant structures,” Opt. Lett. 41, 2358–2361 (2016).
    [Crossref] [PubMed]
  12. K. McGarvey-Lechable and P. Bianucci, “Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators,” Opt. Express 21, 26032–26041 (2014).
    [Crossref]

2017 (1)

K. Kintaka, K. Asai, K. Yamada, J. Inoue, and S. Ura, “Grating-position-shifted cavity-resonator-integrated guided-mode resonance filter”, IEEE Photonics Technol. Lett. 29, 201–204 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (1)

K. McGarvey-Lechable and P. Bianucci, “Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators,” Opt. Express 21, 26032–26041 (2014).
[Crossref]

2012 (3)

2009 (1)

1997 (1)

Asai, K.

K. Kintaka, K. Asai, K. Yamada, J. Inoue, and S. Ura, “Grating-position-shifted cavity-resonator-integrated guided-mode resonance filter”, IEEE Photonics Technol. Lett. 29, 201–204 (2017).
[Crossref]

Awatsuji, Y.

K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
[Crossref]

S. Ura, J. Inoue, K. Kintaka, and Y. Awatsuji, “Proposal of small-aperture guided-mode resonance filter,” in 2011 13th International Conference on Transparent Optical Networks (2011), pp. 1–4.
[Crossref]

Belharet, D.

Bianucci, P.

K. McGarvey-Lechable and P. Bianucci, “Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators,” Opt. Express 21, 26032–26041 (2014).
[Crossref]

Buet, X.

Camon, H.

Chaumet, P. C.

Cluzel, B.

Daran, E.

Demésy, G.

Demichel, O.

Fehrembach, A.-L.

Gauthier-Lafaye, O.

Hatanaka, K.

K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20, 1444–1449 (2012).
[Crossref] [PubMed]

K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
[Crossref]

Inoue, J.

K. Kintaka, K. Asai, K. Yamada, J. Inoue, and S. Ura, “Grating-position-shifted cavity-resonator-integrated guided-mode resonance filter”, IEEE Photonics Technol. Lett. 29, 201–204 (2017).
[Crossref]

K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
[Crossref]

K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20, 1444–1449 (2012).
[Crossref] [PubMed]

S. Ura, J. Inoue, K. Kintaka, and Y. Awatsuji, “Proposal of small-aperture guided-mode resonance filter,” in 2011 13th International Conference on Transparent Optical Networks (2011), pp. 1–4.
[Crossref]

K. Yanagida, K. Mori, M. Nakata, J. Inoue, S. Ura, and K. Kintaka, “Characterization of CRIGF integrated on DBR substrate,” in CPMT Symposium Japan (ICSJ) (IEEE, 2016), pp. 173–176.

Johnson, E. G.

Kintaka, K.

K. Kintaka, K. Asai, K. Yamada, J. Inoue, and S. Ura, “Grating-position-shifted cavity-resonator-integrated guided-mode resonance filter”, IEEE Photonics Technol. Lett. 29, 201–204 (2017).
[Crossref]

K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20, 1444–1449 (2012).
[Crossref] [PubMed]

K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
[Crossref]

S. Ura, J. Inoue, K. Kintaka, and Y. Awatsuji, “Proposal of small-aperture guided-mode resonance filter,” in 2011 13th International Conference on Transparent Optical Networks (2011), pp. 1–4.
[Crossref]

K. Yanagida, K. Mori, M. Nakata, J. Inoue, S. Ura, and K. Kintaka, “Characterization of CRIGF integrated on DBR substrate,” in CPMT Symposium Japan (ICSJ) (IEEE, 2016), pp. 173–176.

Laberdesque, R.

Lozes-Dupuy, F.

Magnusson, R.

Majima, T.

K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20, 1444–1449 (2012).
[Crossref] [PubMed]

K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
[Crossref]

McGarvey-Lechable, K.

K. McGarvey-Lechable and P. Bianucci, “Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators,” Opt. Express 21, 26032–26041 (2014).
[Crossref]

Monmayrant, A.

Mori, K.

K. Yanagida, K. Mori, M. Nakata, J. Inoue, S. Ura, and K. Kintaka, “Characterization of CRIGF integrated on DBR substrate,” in CPMT Symposium Japan (ICSJ) (IEEE, 2016), pp. 173–176.

Nakata, M.

K. Yanagida, K. Mori, M. Nakata, J. Inoue, S. Ura, and K. Kintaka, “Characterization of CRIGF integrated on DBR substrate,” in CPMT Symposium Japan (ICSJ) (IEEE, 2016), pp. 173–176.

Nishii, J.

Nishio, K.

K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
[Crossref]

Petit, M.

Popov, E.

Poutous, M. K.

Rassem, N.

Roth, Z. A.

Rumpf, R. C.

Sentenac, A.

Srinivasan, P.

Tibuleac, S.

Ura, S.

K. Kintaka, K. Asai, K. Yamada, J. Inoue, and S. Ura, “Grating-position-shifted cavity-resonator-integrated guided-mode resonance filter”, IEEE Photonics Technol. Lett. 29, 201–204 (2017).
[Crossref]

K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
[Crossref]

K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20, 1444–1449 (2012).
[Crossref] [PubMed]

K. Yanagida, K. Mori, M. Nakata, J. Inoue, S. Ura, and K. Kintaka, “Characterization of CRIGF integrated on DBR substrate,” in CPMT Symposium Japan (ICSJ) (IEEE, 2016), pp. 173–176.

S. Ura, J. Inoue, K. Kintaka, and Y. Awatsuji, “Proposal of small-aperture guided-mode resonance filter,” in 2011 13th International Conference on Transparent Optical Networks (2011), pp. 1–4.
[Crossref]

Yamada, K.

K. Kintaka, K. Asai, K. Yamada, J. Inoue, and S. Ura, “Grating-position-shifted cavity-resonator-integrated guided-mode resonance filter”, IEEE Photonics Technol. Lett. 29, 201–204 (2017).
[Crossref]

Yanagida, K.

K. Yanagida, K. Mori, M. Nakata, J. Inoue, S. Ura, and K. Kintaka, “Characterization of CRIGF integrated on DBR substrate,” in CPMT Symposium Japan (ICSJ) (IEEE, 2016), pp. 173–176.

Yilmaz, Y. O.

Electron. Lett. (1)

K. Hatanaka, T. Majima, K. Kintaka, J. Inoue, K. Nishio, Y. Awatsuji, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter consisting of curved gratings,” Electron. Lett. 48, 717–718 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Kintaka, K. Asai, K. Yamada, J. Inoue, and S. Ura, “Grating-position-shifted cavity-resonator-integrated guided-mode resonance filter”, IEEE Photonics Technol. Lett. 29, 201–204 (2017).
[Crossref]

J. Opt. Soc. Am. A (3)

Opt. Express (4)

Opt. Lett. (1)

Other (2)

S. Ura, J. Inoue, K. Kintaka, and Y. Awatsuji, “Proposal of small-aperture guided-mode resonance filter,” in 2011 13th International Conference on Transparent Optical Networks (2011), pp. 1–4.
[Crossref]

K. Yanagida, K. Mori, M. Nakata, J. Inoue, S. Ura, and K. Kintaka, “Characterization of CRIGF integrated on DBR substrate,” in CPMT Symposium Japan (ICSJ) (IEEE, 2016), pp. 173–176.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) CRIGF schematic, with glass substrate (blue), etched Si3N4 waveguide (red) and resist capping layer (grey). (b) optical microscope view of a fabricated G-CRIGF.
Fig. 2
Fig. 2 Typical reflectivity spectra of the 9 fabricated G-CRIGFs.
Fig. 3
Fig. 3 Spectral reflectivity maps along y for the 9 fabricated G-CRIGFs (in the stripped regions the device was either not functional or out of the tuning range of our source).
Fig. 4
Fig. 4 (a) Experimental reflectivity peak wavelength versus y-position on the G-CRIGF. Solid lines are linear fits based on the solid color dots (cross points were ignored). (b) Peak wavelength gradient versus period gradient. Dots correspond to the linear fits on the left figure. Dashed line is the theoretical curve using the effective index of the waveguide (Eq. (1)). Full line is the theoretical curve taking waveguide dispersion into account according to Eq. (2).
Fig. 5
Fig. 5 Evolution of reflectivity and spectral width of the resonance versus gradient of the period. Solid color dots correspond to the median of experimental values, black brackets giving the standard deviation. Dashed lines correspond to best fit using Eq. (5).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ r = n eff Λ
λ r y = n s g × Λ y with n s g = n eff × ( 1 λ r n eff d n eff d λ ) 1
I ( y ) = I 0 exp [ 2 ( y y 0 w 0 ) 2 ]
R = R b + R 0 exp [ 2 ( λ λ r Δ λ ) 2 ]
R g ( λ ) : = I ( y ) R ( y , λ ) d y I ( y ) d y = R b + R 0 Δ λ ( Δ λ 2 + ( w 0 λ r y ) 2 ) 1 / 2 exp [ 2 ( λ λ r ) 2 Δ λ 2 + ( w 0 λ r y ) 2 ]

Metrics