Abstract

An all-fiber magnetic field sensor based on whispering-gallery modes (WGM) in a fiber micro-resonator infiltrated with ferronematic liquid crystal is proposed and experimentally demonstrated. The cylindrical microresonator is formed by a 1 cm-long section of a photonic crystal fiber infiltrated with ferronematic materials. Both ferronematics suspensions are prepared based on the nematic liquid crystal 1-(trans-4-Hexylcyclohexyl)-4-isothiocyanatobenzene (6CHBT) doped with rod-like magnetic particles in the first case and with spherical magnetic particles in the second case. WGMs are excited in the fiber microresonator by evanescent light coupling using a tapered fiber with a micron-size diameter. The Q-factor of the microresonator determined from the experimentaly measured transmission spectrum of the tapered fiber was 1.975 × 103. Under the influence of an applied magnetic field the WGM resonances experience spectral shift towards shorter wavelengths. The experimentally demonstrated sensitivity of the proposed sensor was −39.6 pm/mT and −37.3 pm/mT for samples infiltrated with rod like and spherical like ferromagnetic suspensions respectively for a magnetic field range (0-47) mT. Reducing the diameter of the cylindrical micro-resonator by tapering leads to enhancement of the magnetic field sensitivity up to −61.86 pm/mT and −49.88 pm/mT for samples infiltrated with rod like and spherical like ferromagnetic suspensions respectively for the magnetic field range (0-44.7) mT.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tuned whispering gallery mode microresonator based on Kagomé photonic crystal fibers infiltrated with nematic liquid crystals

Fansheng Kong, Bin Yang, Chengkun Yang, Hao Zhang, Bo Liu, Haifeng Liu, and Jie Yu
Appl. Opt. 58(6) 1351-1355 (2019)

Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid

Aseel Mahmood, Vishnu Kavungal, Sudad S. Ahmed, Gerald Farrell, and Yuliya Semenova
Opt. Lett. 40(21) 4983-4986 (2015)

Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal

Vishnu Kavungal, Gerald Farrell, Qiang Wu, Arun Kumar Mallik, and Yuliya Semenova
Opt. Express 26(7) 8431-8442 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [Crossref]
  2. Y. Lu, J.-Q. Yao, P. Wang, and C.-Z. Zhang, “An investigation of a tapered fiber-microsphere coupling system with gain and evanescent-field sensing device,” Optik (Stuttg.) 112(10), 475–478 (2001).
    [Crossref]
  3. D. Armani, B. Min, A. Martin, and K. Vahala, “Electrical thermooptic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
    [Crossref]
  4. N. Pornsuwancharoen and P. P. Yupapin, “Entangled photon states recovery and cloning via the micro ring resonators and an add/drop multiplexer,” Optik 121(10), 897–902 (2009).
    [Crossref]
  5. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: Basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
    [Crossref]
  6. A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
    [Crossref]
  7. J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  8. V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
    [Crossref]
  9. D. Zhu, Y. Zhou, X. Yu, P. Shum, and F. Luan, “Radially graded index whispering gallery mode resonator for penetration enhancement,” Opt. Express 20(24), 26285–26291 (2012).
    [Crossref] [PubMed]
  10. S. Lane, F. Marsiglio, Y. Zhi, and A. Meldrum, “Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment,” Appl. Opt. 54(6), 1331–1340 (2015).
    [Crossref] [PubMed]
  11. M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
    [Crossref]
  12. Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
    [Crossref] [PubMed]
  13. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [Crossref] [PubMed]
  14. P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

2015 (1)

2014 (1)

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

2013 (1)

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

2012 (1)

2011 (1)

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: Basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

2010 (1)

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

2009 (2)

N. Pornsuwancharoen and P. P. Yupapin, “Entangled photon states recovery and cloning via the micro ring resonators and an add/drop multiplexer,” Optik 121(10), 897–902 (2009).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

2006 (3)

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

2004 (2)

D. Armani, B. Min, A. Martin, and K. Vahala, “Electrical thermooptic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[Crossref] [PubMed]

2001 (1)

Y. Lu, J.-Q. Yao, P. Wang, and C.-Z. Zhang, “An investigation of a tapered fiber-microsphere coupling system with gain and evanescent-field sensing device,” Optik (Stuttg.) 112(10), 475–478 (2001).
[Crossref]

Aldridge, J.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Andrés, M. V.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: Basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

Anthes-Washburn, M. S.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Armani, D.

D. Armani, B. Min, A. Martin, and K. Vahala, “Electrical thermooptic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Brambilla, G.

Chaud, X.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Chbouki, N.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Chen, D.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Desai, T.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Díez, A.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: Basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

Eber, N.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Finazzi, V.

Gill, M.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Gimeno, B.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: Basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

Goldberg, B. B.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

He, L.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Hryniewicz, J.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Ilchenko, V.

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Jadzyn, J.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Kopcansky, P.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Lane, S.

Li, L.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Little, B. E.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Liu, Y.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, J.-Q. Yao, P. Wang, and C.-Z. Zhang, “An investigation of a tapered fiber-microsphere coupling system with gain and evanescent-field sensing device,” Optik (Stuttg.) 112(10), 475–478 (2001).
[Crossref]

Luan, F.

Majorosova, J.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Marsiglio, F.

Martin, A.

D. Armani, B. Min, A. Martin, and K. Vahala, “Electrical thermooptic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Matsko, A.

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

Meldrum, A.

Min, B.

D. Armani, B. Min, A. Martin, and K. Vahala, “Electrical thermooptic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Musevic, I.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Oliver King, V.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Ozdemir, S.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Popat, K.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Pornsuwancharoen, N.

N. Pornsuwancharoen and P. P. Yupapin, “Entangled photon states recovery and cloning via the micro ring resonators and an add/drop multiplexer,” Optik 121(10), 897–902 (2009).
[Crossref]

Pu, S.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Rajnak, M.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Richardson, D.

Sai Chu, D.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Shi, L.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Shum, P.

Timko, M.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Tomasovicova, N.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Toth-Katona, T.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Unlu,

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Vahala, K.

D. Armani, B. Min, A. Martin, and K. Vahala, “Electrical thermooptic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Van,

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Wang, P.

Y. Lu, J.-Q. Yao, P. Wang, and C.-Z. Zhang, “An investigation of a tapered fiber-microsphere coupling system with gain and evanescent-field sensing device,” Optik (Stuttg.) 112(10), 475–478 (2001).
[Crossref]

Wang, Z.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Xiao, Y.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xu, X.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Yalcin, A.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Yang, L.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yao, J.-Q.

Y. Lu, J.-Q. Yao, P. Wang, and C.-Z. Zhang, “An investigation of a tapered fiber-microsphere coupling system with gain and evanescent-field sensing device,” Optik (Stuttg.) 112(10), 475–478 (2001).
[Crossref]

Yu, X.

Yupapin, P. P.

N. Pornsuwancharoen and P. P. Yupapin, “Entangled photon states recovery and cloning via the micro ring resonators and an add/drop multiplexer,” Optik 121(10), 897–902 (2009).
[Crossref]

Zamora, V.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: Basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

Zavisova, V.

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Zhang, C.-Z.

Y. Lu, J.-Q. Yao, P. Wang, and C.-Z. Zhang, “An investigation of a tapered fiber-microsphere coupling system with gain and evanescent-field sensing device,” Optik (Stuttg.) 112(10), 475–478 (2001).
[Crossref]

Zhang, X.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Zhao, P.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Zhi, Y.

Zhou, Y.

Zhu, D.

Zhu, J.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Armani, B. Min, A. Martin, and K. Vahala, “Electrical thermooptic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

Lab Chip (1)

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Magnetohydrodynamics (1)

P. Kopcansky, N. Tomasovicova, T. Toth-Katona, N. Eber, M. Timko, V. Zavisova, J. Majorosova, M. Rajnak, J. Jadzyn, and X. Chaud, “Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles,” Magnetohydrodynamics 49(3–4), 586–591 (2013).

Nat. Photonics (2)

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Opt. Express (2)

Optik (1)

N. Pornsuwancharoen and P. P. Yupapin, “Entangled photon states recovery and cloning via the micro ring resonators and an add/drop multiplexer,” Optik 121(10), 897–902 (2009).
[Crossref]

Optik (Stuttg.) (1)

Y. Lu, J.-Q. Yao, P. Wang, and C.-Z. Zhang, “An investigation of a tapered fiber-microsphere coupling system with gain and evanescent-field sensing device,” Optik (Stuttg.) 112(10), 475–478 (2001).
[Crossref]

Photonics Nanostruct. Fundam. Appl. (1)

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: Basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 TEM images of (a) spherical magnetic nanoparticles, (b) rod-like magnetic nanoparticles [16], (c) polarizing microscope images of empty and infiltrated PCF in crossed polarizers, and (d) SEM image of the PM-1550- 01-PCF cross section.
Fig. 2
Fig. 2 Schematic diagram of the experimental setup for the magnetic field sensor characterization.
Fig. 3
Fig. 3 Experimental WGM transmission spectra and corresponding Lorentzian fitting to estimate the Q-factor for the two sample resonators infiltrated with (a) rod-like, and (b) spherical particles containing ferronematic LC in the absence of magnetic field and at room temperature.
Fig. 4
Fig. 4 (a) WGM spectra at different values of the applied magnetic field for the PM-1550-01-PCF infiltrated samples with (a) rod-like and (b) spherical particles.
Fig. 5
Fig. 5 Dependence of selected WGM resonant wavelengths and extinction ratio versus applied magnetic field: (a) rod-like particles containing sample and (b) spherical particles containing sample.
Fig. 6
Fig. 6 The SEM image of the cross section of 50 μm tapered PM- 1550-01-PCFs.
Fig. 7
Fig. 7 Selected WGM resonance wavelength versus applied magnetic field for the tapered sensors (50 µm diameter): (a) rod-like particles sample and (b) spherical particles sample.

Metrics