Abstract

Si nanopillar (NP) arrays are investigated as refractive index sensors in the visible/NIR wavelength range, suitable for Si photodetector responsivity. The NP arrays are fabricated by nanoimprint lithography and dry etching, and coated with thin dielectric layers. The reflectivity peaks obtained by finite-difference time-domain (FDTD) simulations show a linear shift with coating layer thickness. At 730 nm wavelength, sensitivities of ~0.3 and ~0.9 nm/nm of SiO2 and Si3N4, respectively, are obtained; and the optical thicknesses of the deposited surface coatings are determined by comparing the experimental and simulated data. The results show that NP arrays can be used for sensing surface bio-layers. The proposed method could be useful to determine the optical thickness of surface coatings, conformal and non-conformal, in NP-based optical devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon nanopillar arrays with SiO2 overlayer for biosensing application

B. Dev Choudhury, R. Casquel, M.J. Bañuls, F.J. Sanza, M.F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C.A. Barrios, and S. Anand
Opt. Mater. Express 4(7) 1345-1354 (2014)

Bulk sensing performance comparison between silicon dioxide and resonant high aspect ratio nanopillars arrays fabricated by means of interference lithography

I. Cornago, A. L. Hernández, R. Casquel, M. Holgado, M. F. Laguna, F. J. Sanza, and J. Bravo
Opt. Mater. Express 6(7) 2264-2272 (2016)

GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand
Opt. Mater. Express 2(11) 1671-1679 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  2. M. J. Bañuls, R. Puchades, and Á. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
    [Crossref] [PubMed]
  3. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11(12), 1385–1391 (2003).
    [Crossref] [PubMed]
  4. D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
    [Crossref]
  5. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 59 (2012).
  6. X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuat. B 176, 64–68 (2013).
    [Crossref]
  7. N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, “Electrochemical sensors: a powerful tool in analytical chemistry,” J. Braz. Chem. Soc. 14(2), 159–173 (2003).
    [Crossref]
  8. D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors – sensor principle and architectures,” Sensors (Basel) 8(3), 1400–1458 (2008).
    [Crossref] [PubMed]
  9. A. Janshoff, H.-J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors?” Angew. Chem. Int. Ed. Engl. 39(22), 4004–4032 (2000).
    [Crossref] [PubMed]
  10. S. Faegh, N. Jalili, and S. Sridhar, “A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments,” Sensors (Basel) 13(5), 6089–6108 (2013).
    [Crossref] [PubMed]
  11. K. Ramanathan and B. Danielsson, “Principles and applications of thermal biosensors,” Biosens. Bioelectron. 16(6), 417–423 (2001).
    [Crossref] [PubMed]
  12. M. Yakovleva, S. Bhand, and B. Danielsson, “The enzyme thermistor--a realistic biosensor concept. A critical review,” Anal. Chim. Acta 766, 1–12 (2013).
    [Crossref] [PubMed]
  13. P. Xu, K. Yao, J. Zheng, X. Guan, and Y. Shi, “Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing,” Opt. Express 21(22), 26908–26913 (2013).
    [Crossref] [PubMed]
  14. Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuat. A 233, 374–389 (2015).
    [Crossref]
  15. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [Crossref] [PubMed]
  16. C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
    [Crossref] [PubMed]
  17. T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
    [Crossref] [PubMed]
  18. C. E. Campanella, F. De Leonardis, L. Mastronardi, P. Malara, G. Gagliardi, and V. M. N. Passaro, “Investigation of refractive index sensing based on Fano resonance in fiber Bragg grating ring resonators,” Opt. Express 23(11), 14301–14313 (2015).
    [Crossref] [PubMed]
  19. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
    [Crossref] [PubMed]
  20. K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
    [Crossref] [PubMed]
  21. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
    [Crossref]
  22. O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
    [Crossref]
  23. R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
    [Crossref] [PubMed]
  24. Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
    [Crossref]
  25. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  26. B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater. 1(3), 327–341 (2005).
    [Crossref] [PubMed]
  27. J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
    [Crossref] [PubMed]
  28. B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
    [Crossref]
  29. S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
    [Crossref]
  30. R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
    [Crossref] [PubMed]
  31. P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis 28(24), 4539–4551 (2007).
    [Crossref] [PubMed]
  32. M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
    [Crossref] [PubMed]
  33. C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
    [Crossref] [PubMed]
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  35. V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuat. B 226, 204–210 (2016).
    [Crossref]
  36. BWTEK-Your Spectroscopy Partner, “Spectrometer Knowledge, Part 5: Spectral Resolution,” (BWTEK, 2016), http://bwtek.com/spectrometer-part-5-spectral-resolution/
  37. Lumerical, “FDTD Solutions” (Lumerical, 2003–2016), https://www.lumerical.com/tcad-products/fdtd/

2016 (1)

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuat. B 226, 204–210 (2016).
[Crossref]

2015 (3)

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuat. A 233, 374–389 (2015).
[Crossref]

C. E. Campanella, F. De Leonardis, L. Mastronardi, P. Malara, G. Gagliardi, and V. M. N. Passaro, “Investigation of refractive index sensing based on Fano resonance in fiber Bragg grating ring resonators,” Opt. Express 23(11), 14301–14313 (2015).
[Crossref] [PubMed]

Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
[Crossref]

2014 (2)

2013 (7)

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

K. Kim and T. E. Murphy, “Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21(17), 19488–19497 (2013).
[Crossref] [PubMed]

S. Faegh, N. Jalili, and S. Sridhar, “A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments,” Sensors (Basel) 13(5), 6089–6108 (2013).
[Crossref] [PubMed]

M. Yakovleva, S. Bhand, and B. Danielsson, “The enzyme thermistor--a realistic biosensor concept. A critical review,” Anal. Chim. Acta 766, 1–12 (2013).
[Crossref] [PubMed]

P. Xu, K. Yao, J. Zheng, X. Guan, and Y. Shi, “Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing,” Opt. Express 21(22), 26908–26913 (2013).
[Crossref] [PubMed]

M. J. Bañuls, R. Puchades, and Á. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuat. B 176, 64–68 (2013).
[Crossref]

2012 (5)

D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 59 (2012).

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
[Crossref] [PubMed]

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

2009 (2)

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

2008 (3)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors – sensor principle and architectures,” Sensors (Basel) 8(3), 1400–1458 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

2007 (2)

P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref] [PubMed]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

2005 (1)

B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater. 1(3), 327–341 (2005).
[Crossref] [PubMed]

2003 (2)

N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, “Electrochemical sensors: a powerful tool in analytical chemistry,” J. Braz. Chem. Soc. 14(2), 159–173 (2003).
[Crossref]

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11(12), 1385–1391 (2003).
[Crossref] [PubMed]

2001 (1)

K. Ramanathan and B. Danielsson, “Principles and applications of thermal biosensors,” Biosens. Bioelectron. 16(6), 417–423 (2001).
[Crossref] [PubMed]

2000 (1)

A. Janshoff, H.-J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors?” Angew. Chem. Int. Ed. Engl. 39(22), 4004–4032 (2000).
[Crossref] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

Abgrall, P.

P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref] [PubMed]

Akjouj, A.

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

Anand, S.

Bañuls, M. J.

B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. J. Bañuls, R. Puchades, and Á. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Barrios, C. A.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuat. B 226, 204–210 (2016).
[Crossref]

B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

Bhand, S.

M. Yakovleva, S. Bhand, and B. Danielsson, “The enzyme thermistor--a realistic biosensor concept. A critical review,” Anal. Chim. Acta 766, 1–12 (2013).
[Crossref] [PubMed]

Bhushan, B.

B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater. 1(3), 327–341 (2005).
[Crossref] [PubMed]

Bond, T. C.

X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuat. B 176, 64–68 (2013).
[Crossref]

Boukherroub, R.

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

Camon, H.

P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref] [PubMed]

Campanella, C. E.

Canalejas-Tejero, V.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuat. B 226, 204–210 (2016).
[Crossref]

Casquel, R.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuat. B 226, 204–210 (2016).
[Crossref]

B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Chang, A. S. P.

X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuat. B 176, 64–68 (2013).
[Crossref]

Chen, B.

X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuat. B 176, 64–68 (2013).
[Crossref]

Choudhury, B. D.

Conedera, V.

P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref] [PubMed]

Danielsson, B.

M. Yakovleva, S. Bhand, and B. Danielsson, “The enzyme thermistor--a realistic biosensor concept. A critical review,” Anal. Chim. Acta 766, 1–12 (2013).
[Crossref] [PubMed]

K. Ramanathan and B. Danielsson, “Principles and applications of thermal biosensors,” Biosens. Bioelectron. 16(6), 417–423 (2001).
[Crossref] [PubMed]

De Leonardis, F.

Dell’Olio, F.

Ding, Y.

Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
[Crossref]

Djafari-Rouhani, B.

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

Duan, D.-W.

Escorihuela, J.

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

Faegh, S.

S. Faegh, N. Jalili, and S. Sridhar, “A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments,” Sensors (Basel) 13(5), 6089–6108 (2013).
[Crossref] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Fan, Y.

Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
[Crossref]

Gagliardi, G.

Galla, H.-J.

A. Janshoff, H.-J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors?” Angew. Chem. Int. Ed. Engl. 39(22), 4004–4032 (2000).
[Crossref] [PubMed]

García Castelló, J.

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

García-Rupérez, J.

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

Grieshaber, D.

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors – sensor principle and architectures,” Sensors (Basel) 8(3), 1400–1458 (2008).
[Crossref] [PubMed]

Gu, C.

X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuat. B 176, 64–68 (2013).
[Crossref]

Guan, X.

Gue, A.-M.

P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref] [PubMed]

He, Y.

Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
[Crossref]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 59 (2012).

Holgado, M.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuat. B 226, 204–210 (2016).
[Crossref]

B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

Jalili, N.

S. Faegh, N. Jalili, and S. Sridhar, “A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments,” Sensors (Basel) 13(5), 6089–6108 (2013).
[Crossref] [PubMed]

Janshoff, A.

A. Janshoff, H.-J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors?” Angew. Chem. Int. Ed. Engl. 39(22), 4004–4032 (2000).
[Crossref] [PubMed]

Jiang, L.

Keener, M. T.

B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater. 1(3), 327–341 (2005).
[Crossref] [PubMed]

Khranovskyy, V.

R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
[Crossref] [PubMed]

Kim, K.

Laguna, M. F.

B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Lee, S. C.

B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater. 1(3), 327–341 (2005).
[Crossref] [PubMed]

Lévêque, G.

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

Li, B.

Liu, Y.

López, A.

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuat. B 226, 204–210 (2016).
[Crossref]

López-Romero, D.

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Lu, Y.

Lv, R.-Q.

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuat. A 233, 374–389 (2015).
[Crossref]

Ma, H.

Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
[Crossref]

MacKenzie, R.

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors – sensor principle and architectures,” Sensors (Basel) 8(3), 1400–1458 (2008).
[Crossref] [PubMed]

Malara, P.

Manso, M.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

Maquieira, A.

B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Maquieira, Á.

M. J. Bañuls, R. Puchades, and Á. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

Martín-Palma, R. J.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

Mastronardi, L.

Moses, E.

Murphy, T. E.

Nguyen, N.-T.

P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref] [PubMed]

Oron, D.

Ortega, F. J.

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Pacholski, C.

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

Passaro, V. M. N.

Pearce, R.

R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
[Crossref] [PubMed]

Peng, Y.

Pennec, Y.

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

Puchades, R.

B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. J. Bañuls, R. Puchades, and Á. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Ramanathan, K.

K. Ramanathan and B. Danielsson, “Principles and applications of thermal biosensors,” Biosens. Bioelectron. 16(6), 417–423 (2001).
[Crossref] [PubMed]

Rao, Y.-J.

Reimhult, E.

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors – sensor principle and architectures,” Sensors (Basel) 8(3), 1400–1458 (2008).
[Crossref] [PubMed]

Saison-Francioso, O.

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

Sanza, F. J.

B. D. Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing applications,” Opt. Mater. Express 4(7), 1345–1354 (2014).
[Crossref]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Selegard, L.

R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
[Crossref] [PubMed]

Shi, Y.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Shu, C.

Silberberg, Y.

Spetz, A. L.

R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
[Crossref] [PubMed]

Sridhar, S.

S. Faegh, N. Jalili, and S. Sridhar, “A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments,” Sensors (Basel) 13(5), 6089–6108 (2013).
[Crossref] [PubMed]

Steinem, C.

A. Janshoff, H.-J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors?” Angew. Chem. Int. Ed. Engl. 39(22), 4004–4032 (2000).
[Crossref] [PubMed]

Stradiotto, N. R.

N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, “Electrochemical sensors: a powerful tool in analytical chemistry,” J. Braz. Chem. Soc. 14(2), 159–173 (2003).
[Crossref]

Sun, S.

Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
[Crossref]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Szunerits, S.

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 59 (2012).

Thiberge, S.

Toccafondo, V.

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

Tokachichu, D. R.

B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater. 1(3), 327–341 (2005).
[Crossref] [PubMed]

Torres-Costa, V.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

Tsai, H.

Uvdal, K.

R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
[Crossref] [PubMed]

Vörös, J.

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors – sensor principle and architectures,” Sensors (Basel) 8(3), 1400–1458 (2008).
[Crossref] [PubMed]

Wang, M.

Wang, S.

Wang, Z. L.

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Wu, T.

Xiao, H.

Xu, P.

Xu, S.

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Yakimova, R.

R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
[Crossref] [PubMed]

Yakovleva, M.

M. Yakovleva, S. Bhand, and B. Danielsson, “The enzyme thermistor--a realistic biosensor concept. A critical review,” Anal. Chim. Acta 766, 1–12 (2013).
[Crossref] [PubMed]

Yamanaka, H.

N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, “Electrochemical sensors: a powerful tool in analytical chemistry,” J. Braz. Chem. Soc. 14(2), 159–173 (2003).
[Crossref]

Yang, J.

Yang, X.

X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuat. B 176, 64–68 (2013).
[Crossref]

Yao, K.

Ye, H.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

Yelin, D.

Yu, Z.

Zanoni, M. V. B.

N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, “Electrochemical sensors: a powerful tool in analytical chemistry,” J. Braz. Chem. Soc. 14(2), 159–173 (2003).
[Crossref]

Zhang, Y.

Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
[Crossref]

Zhang, Y.-N.

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuat. A 233, 374–389 (2015).
[Crossref]

Zhao, Y.

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuat. A 233, 374–389 (2015).
[Crossref]

Zheng, J.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zhu, T.

Acta Biomater. (1)

B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater. 1(3), 327–341 (2005).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

J. Escorihuela, M. J. Bañuls, J. García Castelló, V. Toccafondo, J. García-Rupérez, R. Puchades, and Á. Maquieira, “Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors,” Anal. Bioanal. Chem. 404(10), 2831–2840 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (3)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

M. J. Bañuls, R. Puchades, and Á. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review,” Anal. Chim. Acta 777, 1–16 (2013).
[Crossref] [PubMed]

M. Yakovleva, S. Bhand, and B. Danielsson, “The enzyme thermistor--a realistic biosensor concept. A critical review,” Anal. Chim. Acta 766, 1–12 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. Janshoff, H.-J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors?” Angew. Chem. Int. Ed. Engl. 39(22), 4004–4032 (2000).
[Crossref] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (2)

K. Ramanathan and B. Danielsson, “Principles and applications of thermal biosensors,” Biosens. Bioelectron. 16(6), 417–423 (2001).
[Crossref] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron. 25(12), 2553–2558 (2010).
[Crossref] [PubMed]

Electrophoresis (1)

P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref] [PubMed]

Front. Biosci. (1)

R. Yakimova, L. Selegard, V. Khranovskyy, R. Pearce, A. L. Spetz, and K. Uvdal, “ZnO materials and surface tailoring for biosensing,” Front. Biosci. 4(1), 254–278 (2012).
[Crossref] [PubMed]

J. Braz. Chem. Soc. (1)

N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, “Electrochemical sensors: a powerful tool in analytical chemistry,” J. Braz. Chem. Soc. 14(2), 159–173 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

O. Saison-Francioso, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, S. Szunerits, and R. Boukherroub, “Plasmonic nanoparticles array for high-sensitivity sensing: a theoretical investigation,” J. Phys. Chem. C 116(33), 17819–17827 (2012).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 59 (2012).

Nano Res. (1)

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Opt. Express (7)

Opt. Mater. Express (1)

RSC Advances (1)

Y. Ding, Y. Fan, Y. Zhang, Y. He, S. Sun, and H. Ma, “Fabrication and optical sensing properties of mesoporous silica nanorod arrays,” RSC Advances 5(110), 90659–90666 (2015).
[Crossref]

Sens. Actuat. A (1)

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuat. A 233, 374–389 (2015).
[Crossref]

Sens. Actuat. B (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B 54(1-2), 3–15 (1999).
[Crossref]

X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuat. B 176, 64–68 (2013).
[Crossref]

V. Canalejas-Tejero, A. López, R. Casquel, M. Holgado, and C. A. Barrios, “Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing,” Sens. Actuat. B 226, 204–210 (2016).
[Crossref]

Sensors (Basel) (5)

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors – sensor principle and architectures,” Sensors (Basel) 8(3), 1400–1458 (2008).
[Crossref] [PubMed]

S. Faegh, N. Jalili, and S. Sridhar, “A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments,” Sensors (Basel) 13(5), 6089–6108 (2013).
[Crossref] [PubMed]

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

BWTEK-Your Spectroscopy Partner, “Spectrometer Knowledge, Part 5: Spectral Resolution,” (BWTEK, 2016), http://bwtek.com/spectrometer-part-5-spectral-resolution/

Lumerical, “FDTD Solutions” (Lumerical, 2003–2016), https://www.lumerical.com/tcad-products/fdtd/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Representative SEM image (tilt 25°) of the fabricated Si NP 530 nm period hexagonal array. Si nanopillar is truncated conical in shape with a pillar height of ~1350 nm and a diameter (top-bottom) of ~200-350 nm. (b) Representative SEM image (tilt 25°) shows a NP array with a SiO2 over-layer of ~20 nm average thickness.

Fig. 2
Fig. 2

Simulated total reflectance spectra for Si NP arrays: (a) schematics of the simulated periodic structure. (b) an example of the peak shift due to a change in effective RI of a 10 nm layer (SiO2 or Si3N4) on the pillar structures. (c) & (d) show the linearly fitted curves obtained from the data in (b). All the peak shift values are summarized in Table 1.

Fig. 3
Fig. 3

The E-field distribution in a cross-sectional view within the unit cell for the Si nanopillar array structure obtained by Lumerical FDTD simulations for the reflection peaks for Peak4 (Fig. 2(a)). (a): no coating layer on the pillar structures (at 730 nm) and (b): NPs with a SiO2 coating layer of 50 nm (at 747 nm).

Fig. 4
Fig. 4

Optical characterization of the peak shift in the reflectance spectrum for the Si NP array sample showing in (a) the total and specular reflectance spectra, in (b) reflectance spectra showing the peak shifts due to an over-layer of either SiO2 or Si3N4. The peak shift values for different coating thicknesses are summarized in Tables 2 and 3.

Tables (3)

Tables Icon

Table 1 Simulated reflectance peak shifts due to RI change due to the surface layer

Tables Icon

Table 2 Measured reflectance peak shifts and “optical” thickness of the surface SiO2 layer

Tables Icon

Table 3 Measured reflectance peak shifts and “optical” thickness of the surface Si3N4 layer

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δλ=RF Δλ W s n W p .
DL= δλ RIS .

Metrics