Abstract

We propose and demonstrate a simple composite second-order (CSO) cancellation technique based on the digital signal processing (DSP) for the radio-over-fiber (RoF) transmission system implemented by using directly modulated lasers (DMLs). When the RoF transmission system is implemented by using DMLs, its performance could be limited by the CSO distortions caused by the interplay between the DML’s chirp and fiber’s chromatic dispersion. We present the theoretical analysis of these nonlinear distortions and show that they can be suppressed at the receiver by using a simple DSP. To verify the effectiveness of the proposed technique, we demonstrate the transmission of twenty-four 100-MHz filtered orthogonal frequency-division multiplexing (f-OFDM) signals in 64 quadrature amplitude modulation (QAM) format over 20 km of the standard single-mode fiber (SSMF). The results show that, by using the proposed technique, we can suppress the CSO distortion components by >10 dB and achieve the error-vector magnitude performance better than 6% even after the 20-km long SSMF transmission.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser

Fan Li, Jianjun Yu, Yuan Fang, Ze Dong, Xinying Li, and Lin Chen
Opt. Express 22(7) 8742-8748 (2014)

High tolerance against chirp induced distortions in PAM4-based digital mobile fronthaul by sample bits interleaving

Haiyun Xin, Kuo Zhang, Yan Fu, Syed Baqar Hussain, Zidong Guo, Amber Sultan, Hao He, and Weisheng Hu
Opt. Express 26(22) 28206-28215 (2018)

Transmission of 20-Gb/s OFDM signals occupying 7-GHz license-free band at 60 GHz using a RoF system employing frequency sextupling optical up-conversion

Po-Tsung Shih, Chun-Ting Lin, Wen-Jr Jiang, Han-Sheng Huang, Jyehong Chen, Anthony Ng’oma, Michael Sauer, and Sien Chi
Opt. Express 18(12) 12748-12755 (2010)

References

  • View by:
  • |
  • |
  • |

  1. ITU-R Rec. M.2083–0, “IMT vision frame work and overall objectives of the future development of IMT for 2020 and beyond,” Sept. 2015.
  2. C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
    [Crossref]
  3. P. Chanclou, A. Pizzinat, F. Le Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. Le Guyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O’Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical fiber solution for mobile fronthaul to achieve cloud radio access network,” in Proceedings of Future Network Mobile Summit (IEEE, 2013), pp. 46–56.
  4. K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Proceedings of Optical Fiber Communication Conference (OFC, 2015), paper Tu2E.1.
    [Crossref]
  5. S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
    [Crossref]
  6. S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proceedings of Optical Fiber Communication Conference (OFC, 2014), paper Tu2B.6.
    [Crossref]
  7. B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference in the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightwave Technol. 35(2), 145–151 (2017).
    [Crossref]
  8. J. Zhang, M. Xu, J. Wing, F. Lu, L. Cheng, H. Cho, K. Ying, J. Yu, and G. K. Chang, “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightwave Technol. 35(4), 989–996 (2017).
    [Crossref]
  9. H. Zeng and X. Liu, “Demonstration of a real-time FPGA-based CPRI-compatible efficient mobile fronthaul transceiver supporting 53 Gb/s CPRI-equivalent data rate using 2.5-GHz-class optics,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC, 2016), paper W.1.E.1.
  10. T. Pham, A. Kanno, N. Yamamoto, and T. Kawanishi, “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and f-OFDM signals,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC, 2016), paper W.4.P1.SC7.71.
  11. B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “Optical fronthaul technologies for next-generation mobile communications,” in Proceedings of International Conference on Transport Optical Network (ICTON, 2016), paper We.D2.5.
  12. E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
    [Crossref]
  13. D. Crosby and G. Lampard, “Dispersion-induced limit on the range of octave confined optical SCM transmission systems,” IEEE Photonics Technol. Lett. 6(8), 1043–1045 (1994).
    [Crossref]
  14. “White paper of next generation fronthaul interface,” China Mobile Research Institute, Alcatel-Lucent, Nokia Networks, ZTE Corporation, Broadcom Corporation, Intel China Research Center, Tech. Rep., Oct. 2015.
  15. W. Way, General Technical Background: Modulation Signal Format, Coaxial Cable Systems, and Network Architecture Evolutions (Academic, 1999).
  16. C. Han, M. Sung, S.-H. Cho, H. Seok Chung, S. M. Kim, and J. H. Lee, “Performance improvement of multi-IFoF-based mobile fronthaul using dispersion-induced distortion mitigation with IF optimization,” J. Lightwave Technol. 34(20), 4772–4778 (2016).
    [Crossref]
  17. C. Kuo and E. Bergmann, “Second-order distortion and electronic compensation in analog links containing fiber amplifiers,” J. Lightwave Technol. 10(11), 1751–1759 (1992).
    [Crossref]
  18. H. Lin and Y. Kao, “Nonlinear distortions and compensations of DFB laser diode in AM-VSB lightwave CATV applications,” J. Lightwave Technol. 14(11), 2567–2574 (1996).
    [Crossref]
  19. X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM — Enabler for flexible waveform in the 5th generation cellular networks,” in Proceedings of Global Communications Conference (IEEE, 2015), pp. 1–6.
    [Crossref]
  20. J. Abdoli, M. Jia, and J. Ma, “Filtered OFDM: A new waveform for future wireless systems,” in Proceedings of 16th Signal Processing Advances in Wireless Communications (SPAWC 2015), pp. 66–70.
  21. 3GPP TS 36.104 version 12.5.0 Release 12, 2014.

2017 (2)

2016 (2)

C. Han, M. Sung, S.-H. Cho, H. Seok Chung, S. M. Kim, and J. H. Lee, “Performance improvement of multi-IFoF-based mobile fronthaul using dispersion-induced distortion mitigation with IF optimization,” J. Lightwave Technol. 34(20), 4772–4778 (2016).
[Crossref]

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

2015 (1)

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

1996 (1)

H. Lin and Y. Kao, “Nonlinear distortions and compensations of DFB laser diode in AM-VSB lightwave CATV applications,” J. Lightwave Technol. 14(11), 2567–2574 (1996).
[Crossref]

1994 (1)

D. Crosby and G. Lampard, “Dispersion-induced limit on the range of octave confined optical SCM transmission systems,” IEEE Photonics Technol. Lett. 6(8), 1043–1045 (1994).
[Crossref]

1992 (1)

C. Kuo and E. Bergmann, “Second-order distortion and electronic compensation in analog links containing fiber amplifiers,” J. Lightwave Technol. 10(11), 1751–1759 (1992).
[Crossref]

1991 (1)

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Agata, A.

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

Astely, D.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Bae, S. H.

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

Bergmann, E.

C. Kuo and E. Bergmann, “Second-order distortion and electronic compensation in analog links containing fiber amplifiers,” J. Lightwave Technol. 10(11), 1751–1759 (1992).
[Crossref]

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Blasco, R.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Chang, G. K.

Chen, L.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM — Enabler for flexible waveform in the 5th generation cellular networks,” in Proceedings of Global Communications Conference (IEEE, 2015), pp. 1–6.
[Crossref]

Cheng, J.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Cheng, L.

Cho, H.

Cho, S.-H.

Chung, Y. C.

B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference in the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightwave Technol. 35(2), 145–151 (2017).
[Crossref]

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

Crosby, D.

D. Crosby and G. Lampard, “Dispersion-induced limit on the range of octave confined optical SCM transmission systems,” IEEE Photonics Technol. Lett. 6(8), 1043–1045 (1994).
[Crossref]

Frenne, M.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Gunnarsson, F.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Han, C.

Höglund, A.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Hong, U. H.

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

Hoymann, C.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Huang, S.

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Huschke, J.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Jia, M.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM — Enabler for flexible waveform in the 5th generation cellular networks,” in Proceedings of Global Communications Conference (IEEE, 2015), pp. 1–6.
[Crossref]

Kao, Y.

H. Lin and Y. Kao, “Nonlinear distortions and compensations of DFB laser diode in AM-VSB lightwave CATV applications,” J. Lightwave Technol. 14(11), 2567–2574 (1996).
[Crossref]

Kim, B. G.

Kim, H.

B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference in the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightwave Technol. 35(2), 145–151 (2017).
[Crossref]

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

Kim, S. M.

Kuo, C.

C. Kuo and E. Bergmann, “Second-order distortion and electronic compensation in analog links containing fiber amplifiers,” J. Lightwave Technol. 10(11), 1751–1759 (1992).
[Crossref]

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Lampard, G.

D. Crosby and G. Lampard, “Dispersion-induced limit on the range of octave confined optical SCM transmission systems,” IEEE Photonics Technol. Lett. 6(8), 1043–1045 (1994).
[Crossref]

Lee, J. H.

Lin, H.

H. Lin and Y. Kao, “Nonlinear distortions and compensations of DFB laser diode in AM-VSB lightwave CATV applications,” J. Lightwave Technol. 14(11), 2567–2574 (1996).
[Crossref]

Lu, F.

Ma, J.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM — Enabler for flexible waveform in the 5th generation cellular networks,” in Proceedings of Global Communications Conference (IEEE, 2015), pp. 1–6.
[Crossref]

Qiu, J.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM — Enabler for flexible waveform in the 5th generation cellular networks,” in Proceedings of Global Communications Conference (IEEE, 2015), pp. 1–6.
[Crossref]

Seok Chung, H.

Shim, H. K.

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

Stattin, M.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Sung, M.

Suzuki, M.

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

Tanaka, K.

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

Wiksröm, G.

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

Wing, J.

Xu, M.

Ying, K.

Yu, J.

Zhang, J.

Zhang, X.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM — Enabler for flexible waveform in the 5th generation cellular networks,” in Proceedings of Global Communications Conference (IEEE, 2015), pp. 1–6.
[Crossref]

IEEE Commun. Mag. (1)

C. Hoymann, D. Astely, M. Stattin, G. Wiksröm, J. Cheng, A. Höglund, M. Frenne, R. Blasco, J. Huschke, and F. Gunnarsson, “LTE release 14 outlook,” IEEE Commun. Mag. 54(6), 44–49 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. H. Bae, H. K. Shim, U. H. Hong, H. Kim, A. Agata, K. Tanaka, M. Suzuki, and Y. C. Chung, “25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system,” IEEE Photonics Technol. Lett. 27(17), 1825–1828 (2015).
[Crossref]

E. Bergmann, C. Kuo, and S. Huang, “Dispersion-induced composite second-order distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

D. Crosby and G. Lampard, “Dispersion-induced limit on the range of octave confined optical SCM transmission systems,” IEEE Photonics Technol. Lett. 6(8), 1043–1045 (1994).
[Crossref]

J. Lightwave Technol. (5)

Other (12)

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM — Enabler for flexible waveform in the 5th generation cellular networks,” in Proceedings of Global Communications Conference (IEEE, 2015), pp. 1–6.
[Crossref]

J. Abdoli, M. Jia, and J. Ma, “Filtered OFDM: A new waveform for future wireless systems,” in Proceedings of 16th Signal Processing Advances in Wireless Communications (SPAWC 2015), pp. 66–70.

3GPP TS 36.104 version 12.5.0 Release 12, 2014.

P. Chanclou, A. Pizzinat, F. Le Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. Le Guyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O’Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical fiber solution for mobile fronthaul to achieve cloud radio access network,” in Proceedings of Future Network Mobile Summit (IEEE, 2013), pp. 46–56.

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Proceedings of Optical Fiber Communication Conference (OFC, 2015), paper Tu2E.1.
[Crossref]

“White paper of next generation fronthaul interface,” China Mobile Research Institute, Alcatel-Lucent, Nokia Networks, ZTE Corporation, Broadcom Corporation, Intel China Research Center, Tech. Rep., Oct. 2015.

W. Way, General Technical Background: Modulation Signal Format, Coaxial Cable Systems, and Network Architecture Evolutions (Academic, 1999).

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proceedings of Optical Fiber Communication Conference (OFC, 2014), paper Tu2B.6.
[Crossref]

H. Zeng and X. Liu, “Demonstration of a real-time FPGA-based CPRI-compatible efficient mobile fronthaul transceiver supporting 53 Gb/s CPRI-equivalent data rate using 2.5-GHz-class optics,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC, 2016), paper W.1.E.1.

T. Pham, A. Kanno, N. Yamamoto, and T. Kawanishi, “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and f-OFDM signals,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC, 2016), paper W.4.P1.SC7.71.

B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “Optical fronthaul technologies for next-generation mobile communications,” in Proceedings of International Conference on Transport Optical Network (ICTON, 2016), paper We.D2.5.

ITU-R Rec. M.2083–0, “IMT vision frame work and overall objectives of the future development of IMT for 2020 and beyond,” Sept. 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup
Fig. 2
Fig. 2 The RF spectra measured at the recevier
Fig. 3
Fig. 3 EVM performance of twenty-four 64-QAM f-OFDM signals
Fig. 4
Fig. 4 Constellation diagrams of channel 23 at the receiver
Fig. 5
Fig. 5 EVM performance of channel 23 versus the RF signal power per channel
Fig. 6
Fig. 6 Measured EVM performance of channel 23 as a function of sampling rate in DSP.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

NL D 2nd ( w i ± w j )= N CSO × m 2 P avg 2 η 2 ( w i ± w k ) 2 ( αη DL β FM λ 2 c ) 2 ( αη ) 2 + ( w i ± w k ) 2 ( α P avg DL β FM λ 2 c ) 2
P t ( t )= P avg +η I LD ( t )
P r ( t )=α× P t ( tΔτ( t ) )× d( tΔτ( t ) ) dt ,
Δτ= DL β FM λ 2 c I LD ( t ).
P r ( t )=α[ P avg +η I LD ( t )+η DL β FM λ 2 c d{ I LD 2 ( t ) } dt ].
I PD ( t )=Rαη[ I LD ( t )+ DL β FM λ 2 c d{ I LD 2 ( t ) } dt ].
I LD ( t ) I PD ( t ) Rαη DL β FM λ 2 c × d dt ( I PD ( t ) Rαη ) 2 .
I LD [ n ]= I PD [ n ] Rαη DL β FM λ 2 c ×2 I PD [ n ] Rαη { I PD [ n+1 ] I PD [ n1 ] 2 T s Rαη }

Metrics