Abstract

Force controlled optical imaging of membranes of living cells is demonstrated. Such imaging has been extended to image membrane potential changes to demonstrate that live cell imaging has been achieved. To accomplish this advance, limitations inherent in atomic force microscopy (AFM) since its inception in 1986 [G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56, 930–933 (1986).] had to be overcome. The advances allow for live cell imaging of a whole genre of functional biological imaging with stiff (1-10N/m) scanned probe imaging cantilevers. Even topographic imaging of fine cell protrusions, such as microvilli, has been accomplished with such cantilevers. Similar topographic imaging has only recently been demonstrated with the standard soft (0.05N/m) cantilevers that are generally required for live cell imaging. The progress reported here demonstrates both ultrasensitive AFM (~100pN), capable of topographic imaging of even microvilli protruding from cell membranes and new functional applications that should have a significant impact on optical and other approaches in biological imaging of living systems and ultrasoft materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and optimization of a near-field scanning optical microscope for imaging biological samples in liquid

Levi A. Gheber, Jeeseong Hwang, and Michael Edidin
Appl. Opt. 37(16) 3574-3581 (1998)

High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events

D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French
Opt. Express 15(24) 15656-15673 (2007)

Label-free optical imaging of mitochondria in live cells

David Lasne, Gerhard. A. Blab, Francesca De Giorgi, François Ichas, Brahim Lounis, and Laurent Cognet
Opt. Express 15(21) 14184-14193 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
    [Crossref]
  2. D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
    [Crossref] [PubMed]
  3. S. Shalom, K. Lieberman, A. Lewis, and S. R. Cohen, “A micropipette force probe suitable for near‐field scanning optical microscopy,” Rev. Sci. Instrum. 63(9), 4061–4065 (1992).
    [Crossref]
  4. M. A. O’Connell and A. J. Wain, “Combined electrochemical-topographical imaging: a critical review,” Anal. Methods 7(17), 6983–6999 (2015).
    [Crossref]
  5. H. Schillers, I. Medalsy, S. Hu, A. L. Slade, and J. E. Shaw, “PeakForce Tapping resolves individual microvilli on living cells,” J. Mol. Recognit. 29(2), 95–101 (2016).
    [Crossref] [PubMed]
  6. D. G. Yablon, Scanning Probe Microscopy for Industrial Applications: Nanomechanical Characterization, 1 edition (Wiley, 2013).
  7. K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
    [Crossref]
  8. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Mapping the mechanical action of light,” Phys. Rev. A 84(1), 011807 (2011).
    [Crossref]
  9. R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
    [Crossref]
  10. C. Manzo, T. S. van Zanten, and M. F. Garcia-Parajo, “Nanoscale Fluorescence Correlation Spectroscopy on Intact Living Cell Membranes with NSOM Probes,” Biophys. J. 100(2), L8–L10 (2011).
    [Crossref] [PubMed]
  11. C. Höppener, D. Molenda, H. Fuchs, and A. Naber, “Scanning near-field optical microscopy of a cell membrane in liquid,” J. Microsc. 210(3), 288–293 (2003).
    [Crossref] [PubMed]
  12. F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75(3), 949–983 (2003).
    [Crossref]
  13. S. Kwon, S. Jeong, and Y. Kang, “Topography and near-field image measurement of soft biological samples in liquid by using a tuning fork based bent optical-fiber sensor,” Rev. Sci. Instrum. 82(4), 043707 (2011).
    [Crossref] [PubMed]
  14. K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
    [Crossref] [PubMed]
  15. W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
    [Crossref]
  16. M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
    [Crossref] [PubMed]
  17. K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
    [Crossref]
  18. P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
    [Crossref] [PubMed]
  19. A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
    [Crossref] [PubMed]
  20. C. Battle, C. M. Ott, D. T. Burnette, J. Lippincott-Schwartz, and C. F. Schmidt, “Intracellular and extracellular forces drive primary cilia movement,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1410–1415 (2015).
    [Crossref] [PubMed]
  21. K. Poole, D. Meder, K. Simons, and D. Müller, “The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy,” FEBS Lett. 565(1-3), 53–58 (2004).
    [Crossref] [PubMed]
  22. V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-Time Monitoring of Epithelial Cell-Cell and Cell-Substrate Interactions by Infrared Surface Plasmon Spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
    [Crossref] [PubMed]
  23. A. Lewis, Y. Y. Kuttner, R. Dekhter, and M. Polhan, “Fluorescence correlation spectroscopy at 100 nM concentrations using near-field scanning optical microscopic (NSOM) geometries and highly diffracting force sensing fiber probes,” Isr. J. Chem. 47(2), 171–176 (2007).
    [Crossref]
  24. T. M. Desrochers, E. Palma, and D. L. Kaplan, “Tissue-engineered kidney disease models,” Adv. Drug Deliv. Rev. 69-70, 67–80 (2014).
    [Crossref] [PubMed]
  25. R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
    [PubMed]
  26. H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
    [Crossref] [PubMed]

2016 (2)

H. Schillers, I. Medalsy, S. Hu, A. L. Slade, and J. E. Shaw, “PeakForce Tapping resolves individual microvilli on living cells,” J. Mol. Recognit. 29(2), 95–101 (2016).
[Crossref] [PubMed]

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

2015 (3)

C. Battle, C. M. Ott, D. T. Burnette, J. Lippincott-Schwartz, and C. F. Schmidt, “Intracellular and extracellular forces drive primary cilia movement,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1410–1415 (2015).
[Crossref] [PubMed]

D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
[Crossref] [PubMed]

M. A. O’Connell and A. J. Wain, “Combined electrochemical-topographical imaging: a critical review,” Anal. Methods 7(17), 6983–6999 (2015).
[Crossref]

2014 (4)

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
[Crossref]

T. M. Desrochers, E. Palma, and D. L. Kaplan, “Tissue-engineered kidney disease models,” Adv. Drug Deliv. Rev. 69-70, 67–80 (2014).
[Crossref] [PubMed]

2012 (1)

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

2011 (4)

C. Manzo, T. S. van Zanten, and M. F. Garcia-Parajo, “Nanoscale Fluorescence Correlation Spectroscopy on Intact Living Cell Membranes with NSOM Probes,” Biophys. J. 100(2), L8–L10 (2011).
[Crossref] [PubMed]

D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Mapping the mechanical action of light,” Phys. Rev. A 84(1), 011807 (2011).
[Crossref]

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

S. Kwon, S. Jeong, and Y. Kang, “Topography and near-field image measurement of soft biological samples in liquid by using a tuning fork based bent optical-fiber sensor,” Rev. Sci. Instrum. 82(4), 043707 (2011).
[Crossref] [PubMed]

2010 (1)

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-Time Monitoring of Epithelial Cell-Cell and Cell-Substrate Interactions by Infrared Surface Plasmon Spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

2009 (1)

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

2007 (1)

A. Lewis, Y. Y. Kuttner, R. Dekhter, and M. Polhan, “Fluorescence correlation spectroscopy at 100 nM concentrations using near-field scanning optical microscopic (NSOM) geometries and highly diffracting force sensing fiber probes,” Isr. J. Chem. 47(2), 171–176 (2007).
[Crossref]

2004 (3)

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
[Crossref] [PubMed]

K. Poole, D. Meder, K. Simons, and D. Müller, “The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy,” FEBS Lett. 565(1-3), 53–58 (2004).
[Crossref] [PubMed]

2003 (2)

C. Höppener, D. Molenda, H. Fuchs, and A. Naber, “Scanning near-field optical microscopy of a cell membrane in liquid,” J. Microsc. 210(3), 288–293 (2003).
[Crossref] [PubMed]

F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75(3), 949–983 (2003).
[Crossref]

2000 (1)

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

1995 (1)

K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[Crossref]

1992 (1)

S. Shalom, K. Lieberman, A. Lewis, and S. R. Cohen, “A micropipette force probe suitable for near‐field scanning optical microscopy,” Rev. Sci. Instrum. 63(9), 4061–4065 (1992).
[Crossref]

Abriel, H.

D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
[Crossref] [PubMed]

Acimovic, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

Acker, C. D.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Amarouch, M.-Y.

D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
[Crossref] [PubMed]

Antic, S. D.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Aroeti, B.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-Time Monitoring of Epithelial Cell-Cell and Cell-Substrate Interactions by Infrared Surface Plasmon Spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Backert, S.

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Balla, T.

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Battle, C.

C. Battle, C. M. Ott, D. T. Burnette, J. Lippincott-Schwartz, and C. F. Schmidt, “Intracellular and extracellular forces drive primary cilia movement,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1410–1415 (2015).
[Crossref] [PubMed]

Behr, P.

D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
[Crossref] [PubMed]

Beren, J. J.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Bernstein, Y.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Bollensdorff, C.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Brahami, A.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Brinster, L. R.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Burnette, D. T.

C. Battle, C. M. Ott, D. T. Burnette, J. Lippincott-Schwartz, and C. F. Schmidt, “Intracellular and extracellular forces drive primary cilia movement,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1410–1415 (2015).
[Crossref] [PubMed]

Byeon, C. C.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Cambi, A.

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

Choi, G.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Choi, S. B.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Cohen, S. R.

S. Shalom, K. Lieberman, A. Lewis, and S. R. Cohen, “A micropipette force probe suitable for near‐field scanning optical microscopy,” Rev. Sci. Instrum. 63(9), 4061–4065 (1992).
[Crossref]

Cook, J. L.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Davidov, D.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-Time Monitoring of Epithelial Cell-Cell and Cell-Substrate Interactions by Infrared Surface Plasmon Spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

de Bakker, B. I.

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

Dekhter, R.

A. Lewis, Y. Y. Kuttner, R. Dekhter, and M. Polhan, “Fluorescence correlation spectroscopy at 100 nM concentrations using near-field scanning optical microscopic (NSOM) geometries and highly diffracting force sensing fiber probes,” Isr. J. Chem. 47(2), 171–176 (2007).
[Crossref]

Desrochers, T. M.

T. M. Desrochers, E. Palma, and D. L. Kaplan, “Tissue-engineered kidney disease models,” Adv. Drug Deliv. Rev. 69-70, 67–80 (2014).
[Crossref] [PubMed]

Dogariu, A.

D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Mapping the mechanical action of light,” Phys. Rev. A 84(1), 011807 (2011).
[Crossref]

Figdor, C. G.

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

Foseh, G. S.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Fuchs, H.

C. Höppener, D. Molenda, H. Fuchs, and A. Naber, “Scanning near-field optical microscopy of a cell membrane in liquid,” J. Microsc. 210(3), 288–293 (2003).
[Crossref] [PubMed]

Garcia-Parajo, M. F.

C. Manzo, T. S. van Zanten, and M. F. Garcia-Parajo, “Nanoscale Fluorescence Correlation Spectroscopy on Intact Living Cell Membranes with NSOM Probes,” Biophys. J. 100(2), L8–L10 (2011).
[Crossref] [PubMed]

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

Giessibl, F. J.

F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75(3), 949–983 (2003).
[Crossref]

Goldstein, O.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Golosovsky, M.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-Time Monitoring of Epithelial Cell-Cell and Cell-Substrate Interactions by Infrared Surface Plasmon Spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Grant, D.

A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
[Crossref] [PubMed]

Grinstein, S.

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Grober, R. D.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[Crossref]

Hamra, P.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Hespanha, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

Hessman, D.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

Höppener, C.

C. Höppener, D. Molenda, H. Fuchs, and A. Naber, “Scanning near-field optical microscopy of a cell membrane in liquid,” J. Microsc. 210(3), 288–293 (2003).
[Crossref] [PubMed]

Hu, S.

H. Schillers, I. Medalsy, S. Hu, A. L. Slade, and J. E. Shaw, “PeakForce Tapping resolves individual microvilli on living cells,” J. Mol. Recognit. 29(2), 95–101 (2016).
[Crossref] [PubMed]

Ianoul, A.

A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
[Crossref] [PubMed]

Jang, M. J.

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

Jeong, M. S.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Jeong, S.

S. Kwon, S. Jeong, and Y. Kang, “Topography and near-field image measurement of soft biological samples in liquid by using a tuning fork based bent optical-fiber sensor,” Rev. Sci. Instrum. 82(4), 043707 (2011).
[Crossref] [PubMed]

Johnston, L. J.

A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
[Crossref] [PubMed]

Joosten, B.

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

Kang, Y.

S. Kwon, S. Jeong, and Y. Kang, “Topography and near-field image measurement of soft biological samples in liquid by using a tuning fork based bent optical-fiber sensor,” Rev. Sci. Instrum. 82(4), 043707 (2011).
[Crossref] [PubMed]

Kaplan, D. L.

T. M. Desrochers, E. Palma, and D. L. Kaplan, “Tissue-engineered kidney disease models,” Adv. Drug Deliv. Rev. 69-70, 67–80 (2014).
[Crossref] [PubMed]

Karrai, K.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[Crossref]

Kim, D.-C.

W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
[Crossref]

Kim, D.-S.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Kim, J. H.

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

Kim, S.

W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
[Crossref]

Kindlemann, P. J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

Kohl, P.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Kohlgraf-Owens, D. C.

D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Mapping the mechanical action of light,” Phys. Rev. A 84(1), 011807 (2011).
[Crossref]

Koopman, M.

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

Kuttner, Y. Y.

A. Lewis, Y. Y. Kuttner, R. Dekhter, and M. Polhan, “Fluorescence correlation spectroscopy at 100 nM concentrations using near-field scanning optical microscopic (NSOM) geometries and highly diffracting force sensing fiber probes,” Isr. J. Chem. 47(2), 171–176 (2007).
[Crossref]

Kwon, S.

S. Kwon, S. Jeong, and Y. Kang, “Topography and near-field image measurement of soft biological samples in liquid by using a tuning fork based bent optical-fiber sensor,” Rev. Sci. Instrum. 82(4), 043707 (2011).
[Crossref] [PubMed]

Lee, E.-H.

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

Lee, P.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Lee, S. G.

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
[Crossref]

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Lee, W.

W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
[Crossref]

Lev, D.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Levy, H.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Lewis, A.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

A. Lewis, Y. Y. Kuttner, R. Dekhter, and M. Polhan, “Fluorescence correlation spectroscopy at 100 nM concentrations using near-field scanning optical microscopic (NSOM) geometries and highly diffracting force sensing fiber probes,” Isr. J. Chem. 47(2), 171–176 (2007).
[Crossref]

S. Shalom, K. Lieberman, A. Lewis, and S. R. Cohen, “A micropipette force probe suitable for near‐field scanning optical microscopy,” Rev. Sci. Instrum. 63(9), 4061–4065 (1992).
[Crossref]

Lewis, A. M.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Lieberman, K.

S. Shalom, K. Lieberman, A. Lewis, and S. R. Cohen, “A micropipette force probe suitable for near‐field scanning optical microscopy,” Rev. Sci. Instrum. 63(9), 4061–4065 (1992).
[Crossref]

Lippincott-Schwartz, J.

C. Battle, C. M. Ott, D. T. Burnette, J. Lippincott-Schwartz, and C. F. Schmidt, “Intracellular and extracellular forces drive primary cilia movement,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1410–1415 (2015).
[Crossref] [PubMed]

Lirtsman, V.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-Time Monitoring of Epithelial Cell-Cell and Cell-Substrate Interactions by Infrared Surface Plasmon Spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Loew, L. M.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Lotti, J.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Mansvelder, H. D.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Manus, S.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

Manzo, C.

C. Manzo, T. S. van Zanten, and M. F. Garcia-Parajo, “Nanoscale Fluorescence Correlation Spectroscopy on Intact Living Cell Membranes with NSOM Probes,” Biophys. J. 100(2), L8–L10 (2011).
[Crossref] [PubMed]

Medalsy, I.

H. Schillers, I. Medalsy, S. Hu, A. L. Slade, and J. E. Shaw, “PeakForce Tapping resolves individual microvilli on living cells,” J. Mol. Recognit. 29(2), 95–101 (2016).
[Crossref] [PubMed]

Meder, D.

K. Poole, D. Meder, K. Simons, and D. Müller, “The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy,” FEBS Lett. 565(1-3), 53–58 (2004).
[Crossref] [PubMed]

Melamed-Book, N.

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Milgrom, M.

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Molenda, D.

C. Höppener, D. Molenda, H. Fuchs, and A. Naber, “Scanning near-field optical microscopy of a cell membrane in liquid,” J. Microsc. 210(3), 288–293 (2003).
[Crossref] [PubMed]

Morse, A. S.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

Müller, D.

K. Poole, D. Meder, K. Simons, and D. Müller, “The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy,” FEBS Lett. 565(1-3), 53–58 (2004).
[Crossref] [PubMed]

Naber, A.

C. Höppener, D. Molenda, H. Fuchs, and A. Naber, “Scanning near-field optical microscopy of a cell membrane in liquid,” J. Microsc. 210(3), 288–293 (2003).
[Crossref] [PubMed]

Negrean, A.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

O, B.-H.

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
[Crossref]

O’Connell, M. A.

M. A. O’Connell and A. J. Wain, “Combined electrochemical-topographical imaging: a critical review,” Anal. Methods 7(17), 6983–6999 (2015).
[Crossref]

Omeir, R. L.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Ossola, D.

D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
[Crossref] [PubMed]

Ott, C. M.

C. Battle, C. M. Ott, D. T. Burnette, J. Lippincott-Schwartz, and C. F. Schmidt, “Intracellular and extracellular forces drive primary cilia movement,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1410–1415 (2015).
[Crossref] [PubMed]

Palma, E.

T. M. Desrochers, E. Palma, and D. L. Kaplan, “Tissue-engineered kidney disease models,” Adv. Drug Deliv. Rev. 69-70, 67–80 (2014).
[Crossref] [PubMed]

Park, D. J.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Park, K.-D.

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Park, S.-G.

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
[Crossref]

Pavone, F. S.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Peden, K.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Pezacki, J.

A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
[Crossref] [PubMed]

Polhan, M.

A. Lewis, Y. Y. Kuttner, R. Dekhter, and M. Polhan, “Fluorescence correlation spectroscopy at 100 nM concentrations using near-field scanning optical microscopic (NSOM) geometries and highly diffracting force sensing fiber probes,” Isr. J. Chem. 47(2), 171–176 (2007).
[Crossref]

Poole, K.

K. Poole, D. Meder, K. Simons, and D. Müller, “The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy,” FEBS Lett. 565(1-3), 53–58 (2004).
[Crossref] [PubMed]

Raschke, M. B.

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

Rosenshine, I.

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Sacconi, L.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Sason, H.

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Schillers, H.

H. Schillers, I. Medalsy, S. Hu, A. L. Slade, and J. E. Shaw, “PeakForce Tapping resolves individual microvilli on living cells,” J. Mol. Recognit. 29(2), 95–101 (2016).
[Crossref] [PubMed]

Schmidt, C. F.

C. Battle, C. M. Ott, D. T. Burnette, J. Lippincott-Schwartz, and C. F. Schmidt, “Intracellular and extracellular forces drive primary cilia movement,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1410–1415 (2015).
[Crossref] [PubMed]

Schuck, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

Sebag, D.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Shalom, S.

S. Shalom, K. Lieberman, A. Lewis, and S. R. Cohen, “A micropipette force probe suitable for near‐field scanning optical microscopy,” Rev. Sci. Instrum. 63(9), 4061–4065 (1992).
[Crossref]

Shaw, J. E.

H. Schillers, I. Medalsy, S. Hu, A. L. Slade, and J. E. Shaw, “PeakForce Tapping resolves individual microvilli on living cells,” J. Mol. Recognit. 29(2), 95–101 (2016).
[Crossref] [PubMed]

Simons, K.

K. Poole, D. Meder, K. Simons, and D. Müller, “The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy,” FEBS Lett. 565(1-3), 53–58 (2004).
[Crossref] [PubMed]

Slade, A. L.

H. Schillers, I. Medalsy, S. Hu, A. L. Slade, and J. E. Shaw, “PeakForce Tapping resolves individual microvilli on living cells,” J. Mol. Recognit. 29(2), 95–101 (2016).
[Crossref] [PubMed]

Snoy, P. J.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Street, M.

A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
[Crossref] [PubMed]

Sukhov, S.

D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Mapping the mechanical action of light,” Phys. Rev. A 84(1), 011807 (2011).
[Crossref]

Tal, N.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Taylor, R. S.

A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
[Crossref] [PubMed]

Teferedegne, B.

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

Tiemann, I.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

van Hulst, N. F.

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

van Zanten, T. S.

C. Manzo, T. S. van Zanten, and M. F. Garcia-Parajo, “Nanoscale Fluorescence Correlation Spectroscopy on Intact Living Cell Membranes with NSOM Probes,” Biophys. J. 100(2), L8–L10 (2011).
[Crossref] [PubMed]

Vörös, J.

D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
[Crossref] [PubMed]

Wain, A. J.

M. A. O’Connell and A. J. Wain, “Combined electrochemical-topographical imaging: a critical review,” Anal. Methods 7(17), 6983–6999 (2015).
[Crossref]

Weiss, A. M.

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Yan, P.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Yashunsky, V.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-Time Monitoring of Epithelial Cell-Cell and Cell-Substrate Interactions by Infrared Surface Plasmon Spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Yeshua, T.

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Zambelli, T.

D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
[Crossref] [PubMed]

Zhou, W.-L.

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

T. M. Desrochers, E. Palma, and D. L. Kaplan, “Tissue-engineered kidney disease models,” Adv. Drug Deliv. Rev. 69-70, 67–80 (2014).
[Crossref] [PubMed]

Anal. Methods (1)

M. A. O’Connell and A. J. Wain, “Combined electrochemical-topographical imaging: a critical review,” Anal. Methods 7(17), 6983–6999 (2015).
[Crossref]

Appl. Phys. Lett. (1)

K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[Crossref]

Biophys. J. (3)

A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. J. Johnston, “Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes,” Biophys. J. 87(5), 3525–3535 (2004).
[Crossref] [PubMed]

C. Manzo, T. S. van Zanten, and M. F. Garcia-Parajo, “Nanoscale Fluorescence Correlation Spectroscopy on Intact Living Cell Membranes with NSOM Probes,” Biophys. J. 100(2), L8–L10 (2011).
[Crossref] [PubMed]

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-Time Monitoring of Epithelial Cell-Cell and Cell-Substrate Interactions by Infrared Surface Plasmon Spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Comp. Med. (1)

R. L. Omeir, B. Teferedegne, G. S. Foseh, J. J. Beren, P. J. Snoy, L. R. Brinster, J. L. Cook, K. Peden, and A. M. Lewis., “Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells,” Comp. Med. 61(3), 243–250 (2011).
[PubMed]

FEBS Lett. (2)

K. Poole, D. Meder, K. Simons, and D. Müller, “The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy,” FEBS Lett. 565(1-3), 53–58 (2004).
[Crossref] [PubMed]

M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, “Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells,” FEBS Lett. 573(1-3), 6–10 (2004).
[Crossref] [PubMed]

Isr. J. Chem. (1)

A. Lewis, Y. Y. Kuttner, R. Dekhter, and M. Polhan, “Fluorescence correlation spectroscopy at 100 nM concentrations using near-field scanning optical microscopic (NSOM) geometries and highly diffracting force sensing fiber probes,” Isr. J. Chem. 47(2), 171–176 (2007).
[Crossref]

J. Korean Phys. Soc. (1)

W. Lee, S. Kim, D.-C. Kim, B.-H. O, S.-G. Park, and S. G. Lee, “Existence of a stable resonance zone with nearly unchanging vibration characteristics for a near-field scanning optical microscope probe dipped partially into a liquid,” J. Korean Phys. Soc. 64(3), 366–370 (2014).
[Crossref]

J. Microsc. (1)

C. Höppener, D. Molenda, H. Fuchs, and A. Naber, “Scanning near-field optical microscopy of a cell membrane in liquid,” J. Microsc. 210(3), 288–293 (2003).
[Crossref] [PubMed]

J. Mol. Recognit. (1)

H. Schillers, I. Medalsy, S. Hu, A. L. Slade, and J. E. Shaw, “PeakForce Tapping resolves individual microvilli on living cells,” J. Mol. Recognit. 29(2), 95–101 (2016).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

K.-D. Park, M. B. Raschke, M. J. Jang, J. H. Kim, B.-H. O, S.-G. Park, E.-H. Lee, and S. G. Lee, “Near-field imaging of cell membranes in liquid enabled by active scanning probe mechanical resonance control,” J. Phys. Chem. C 120(37), 21138–21144 (2016).
[Crossref]

Mol. Biol. Cell (1)

H. Sason, M. Milgrom, A. M. Weiss, N. Melamed-Book, T. Balla, S. Grinstein, S. Backert, I. Rosenshine, and B. Aroeti, “Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection,” Mol. Biol. Cell 20(1), 544–555 (2009).
[Crossref] [PubMed]

Nano Lett. (1)

D. Ossola, M.-Y. Amarouch, P. Behr, J. Vörös, H. Abriel, and T. Zambelli, “Force-controlled patch clamp of beating cardiac cells,” Nano Lett. 15(3), 1743–1750 (2015).
[Crossref] [PubMed]

Nanophotonics (1)

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy, Y. Bernstein, A. Brahami, N. Tal, O. Goldstein, and T. Yeshua, “The optical near-field: super-resolution imaging with structural and phase correlation,” Nanophotonics 3(1-2), 3–18 (2014).
[Crossref]

Nanotechnology (1)

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25(7), 075704 (2014).
[Crossref] [PubMed]

Phys. Rev. A (1)

D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Mapping the mechanical action of light,” Phys. Rev. A 84(1), 011807 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, “Palette of fluorinated voltage-sensitive hemicyanine dyes,” Proc. Natl. Acad. Sci. U.S.A. 109(50), 20443–20448 (2012).
[Crossref] [PubMed]

C. Battle, C. M. Ott, D. T. Burnette, J. Lippincott-Schwartz, and C. F. Schmidt, “Intracellular and extracellular forces drive primary cilia movement,” Proc. Natl. Acad. Sci. U.S.A. 112(5), 1410–1415 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75(3), 949–983 (2003).
[Crossref]

Rev. Sci. Instrum. (3)

S. Kwon, S. Jeong, and Y. Kang, “Topography and near-field image measurement of soft biological samples in liquid by using a tuning fork based bent optical-fiber sensor,” Rev. Sci. Instrum. 82(4), 043707 (2011).
[Crossref] [PubMed]

S. Shalom, K. Lieberman, A. Lewis, and S. R. Cohen, “A micropipette force probe suitable for near‐field scanning optical microscopy,” Rev. Sci. Instrum. 63(9), 4061–4065 (1992).
[Crossref]

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71(7), 2776–2780 (2000).
[Crossref]

Other (1)

D. G. Yablon, Scanning Probe Microscopy for Industrial Applications: Nanomechanical Characterization, 1 edition (Wiley, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Functional dependence of quality factor, Q, with probe tip penetration into the liquid at room temperature. (b) Height reduction as a function of time, at room temperature of the liquid layer contained in the liquid cell due to liquid evaporation in an open cell without the suggested solution in (c); (c) A diagrammatic illustration of the liquid cell with a parting of the body of water or a “Moses Like Effect” generated by the wetting angle of the Perspex coverslip with an aperture surrounding the probe. This resulted in maintaining a small, stable probe tip penetration with a large Q factor and protected a reservoir of liquid on either side, with reduced evaporation. Such a development allowed a stable thin layer of liquid above the cells at the point where the probe tip images the sample. Thus, the region of the cell membrane stained with a membrane voltage sensitive dye Di-4-AN(F)EPPTEA remains hydrated for NSOM absorption/fluorescence and topographic imaging. The configuration of the liquid cell works for both straight and cantilevered glass probes.

Fig. 2
Fig. 2

Comparison of four imaging modes of MDCK cells clearly showing different contrast & complementarity of the information. Topographic imaging and simultaneously obtained NSOM absorption (a, b) and fluorescence imaging (d, e). All NSOM (b, c and e) & scanning confocal fluorescence image (f) were obtained on cells stained with a membrane bound voltage sensitive dye, Di-4-AN(F)EPPTEA. The NSOM absorption image (b) shows defined contrast of dark dots surrounded by bright regions. These dark dots due to absorption are interpreted as membrane emanating microvilli filled with dye (see text). Similarly, in the NSOM absorption image (b) a large dark circular region is correlated with a large protrusion in the topography (a). This is indicated with a blue arrow. It is interpreted as a cilium which is known to be seen in such cells and would have a larger membrane surface area and therefore more absorption. The NSOM fluorescence (e) obtained in a second scan of the same location shows opposite contrast. The dark cilium in absorption is now a bright fluorescent region. A blue arrow has been placed between (d) and (e) indicating this. To further guide the reader a gold arrow correlates a depression in the topography with a dark region in the fluorescence. Contrast reversal is also seen for the dark dot in (b) interpreted as a microvillus which is correlated with a bright dot in (e). A green arrow has been placed as a guide. The laser scanning confocal fluorescence imaging, which is not surface centric as is the case in NSOM, shows different contrast complementing the NSOM results. A region of the absorption image at higher resolution is shown in (c). The line scan shows an edge sharpness of 150nm. Other imaging parameters include: a straight NSOM probe mounted in shear force geometry, Q-factor in liquid 2000, scan area 40µm X 40µm, 12msec/pixel with 488nm laser excitation having an input power of 12mW.

Fig. 3
Fig. 3

(a) Imaging live MDCK cell microvilli with a cantilevered glass probe attached to a tuning fork and mounted for normal force imaging. Other imaging parameters were a Q factor in liquid 5000, scan area 30µm X 30µm, 12msec/pixel. A reduction of a few hundred in the Q factor from air is seen in liquid depending on the depth of penetration of the probe. (b) A line scan showing the resolution of the image. (c) and (d) Width and length of microvilli.

Fig. 4
Fig. 4

(a) Monitoring and (b, c) Imaging cell depolarization with addition of 5mM KCl using NSOM fluorescence imaging of Di-4-AN(F)EPPTEA stained membrane. Imaging parameters included a straight NSOM probe mounted in shear force geometry, Q-factor in liquid 300 (in air: 2100), scan area 50µm X 19µm, 12msec/pixel with 514nm laser excitation having an input power of 12mW.

Metrics