Abstract

Suspended optical microresonators are promising devices for on-chip photonic applications such as radio-frequency oscillators, optical frequency combs, and sensors. Scaling up these devices demands the capability to tune the optical resonances in an integrated manner. Here, we design and experimentally demonstrate integrated on-chip thermo-optic tuning of suspended microresonators by utilizing suspended wire bridges and microheaters. We demonstrate the ability to tune the resonance of a suspended microresonator in silicon nitride platform by 9.7 GHz using 5.3 mW of heater power. The loaded optical quality factor (QL ~92,000) stays constant throughout the detuning. We demonstrate the efficacy of our approach by completely turning on and off the optical coupling between two evanescently coupled suspended microresonators.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct thermo-optical tuning of silicon microresonators for the mid-infrared

L. Koehler, P. Chevalier, E. Shim, B. Desiatov, A. Shams-Ansari, M. Piccardo, Y. Okawachi, M. Yu, M. Loncar, M. Lipson, A. L. Gaeta, and F. Capasso
Opt. Express 26(26) 34965-34976 (2018)

On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes

Min Wang, Yingxin Xu, Zhiwei Fang, Yang Liao, Peng Wang, Wei Chu, Lingling Qiao, Jintian Lin, Wei Fang, and Ya Cheng
Opt. Express 25(1) 124-129 (2017)

Electro-optofluidics: achieving dynamic control on-chip

Mohammad Soltani, James T. Inman, Michal Lipson, and Michelle D. Wang
Opt. Express 20(20) 22314-22326 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, X. Guan, Q. Huang, J. Zheng, Y. Shi, and D. Dai, “Suspended ultra-small disk resonator on silicon for optical sensing,” Opt. Lett. 38(24), 5405–5408 (2013).
    [Crossref] [PubMed]
  2. S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, “Suspended Micro-Ring Resonator for Enhanced Biomolecule Detection Sensitivity,” Proc. SPIE 8933, 893306 (2014).
    [Crossref]
  3. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  4. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
    [Crossref] [PubMed]
  5. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
    [Crossref] [PubMed]
  6. S. Y. Shah, M. Zhang, R. Rand, and M. Lipson, “Master-Slave Locking of Optomechanical Oscillators Over a Long Distance,” Phys. Rev. Lett. 114(11), 113602 (2015).
    [Crossref] [PubMed]
  7. M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light,” Phys. Rev. Lett. 115(16), 163902 (2015).
    [Crossref] [PubMed]
  8. I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
    [Crossref]
  9. N. V. Kryzhanovskaya, M. V. Maximov, A. E. Zhukov, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, M. M. Kulagina, K. A. Vashanova, Y. M. Zadiranov, S. I. Troshkov, V. V. Nevedomsky, S. A. Ruvimov, A. A. Lipovskii, N. A. Kalyuzhnyy, and S. A. Mintairov, “Single-Mode Emission From 4–9-μm Microdisk Lasers With Dense Array of InGaAs Quantum Dots,” J. Lightwave Technol. 33(1), 171–175 (2015).
    [Crossref]
  10. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
    [Crossref]
  11. S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23(16), 21527–21540 (2015).
    [Crossref] [PubMed]
  12. X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi, and A. M. Weiner, “Thermal tuning of Kerr frequency combs in silicon nitride microring resonators,” Opt. Express 24(1), 687–698 (2016).
    [Crossref] [PubMed]
  13. E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.
  14. A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98(4), 041102 (2011).
    [Crossref]
  15. F. Monifi, J. Friedlein, S. K. Ozdemir, and L. Yang, “A Robust and Tunable Add-Drop Filter Using Whispering Gallery Mode Microtoroid Resonator,” J. Lightwave Technol. 30(21), 3306–3315 (2012).
    [Crossref]
  16. J. M. Shainline, G. Fernandes, Z. Liu, and J. Xu, “Broad tuning of whispering-gallery modes in silicon microdisks,” Opt. Express 18(14), 14345–14352 (2010).
    [Crossref] [PubMed]
  17. N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
    [Crossref]
  18. C. G. Baker, C. Bekker, D. L. McAuslan, E. Sheridan, and W. P. Bowen, “High bandwidth on-chip capacitive tuning of microtoroid resonators,” Opt. Express 24(18), 20400–20412 (2016).
    [Crossref] [PubMed]
  19. D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
    [Crossref]
  20. R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
    [Crossref] [PubMed]
  21. COMSOL Multiphysics is a finite-element multiphysics simulation tool. COMSOL AB.
  22. D. W. Hoffman and J. A. Thornton, “Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source,” J. Vac. Sci. Technol. 20(3), 355–358 (1982).
    [Crossref]
  23. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref] [PubMed]
  24. M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  25. L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
    [Crossref]

2016 (4)

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi, and A. M. Weiner, “Thermal tuning of Kerr frequency combs in silicon nitride microring resonators,” Opt. Express 24(1), 687–698 (2016).
[Crossref] [PubMed]

C. G. Baker, C. Bekker, D. L. McAuslan, E. Sheridan, and W. P. Bowen, “High bandwidth on-chip capacitive tuning of microtoroid resonators,” Opt. Express 24(18), 20400–20412 (2016).
[Crossref] [PubMed]

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (1)

S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, “Suspended Micro-Ring Resonator for Enhanced Biomolecule Detection Sensitivity,” Proc. SPIE 8933, 893306 (2014).
[Crossref]

2013 (3)

2012 (3)

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

F. Monifi, J. Friedlein, S. K. Ozdemir, and L. Yang, “A Robust and Tunable Add-Drop Filter Using Whispering Gallery Mode Microtoroid Resonator,” J. Lightwave Technol. 30(21), 3306–3315 (2012).
[Crossref]

2011 (2)

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98(4), 041102 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

2010 (2)

J. M. Shainline, G. Fernandes, Z. Liu, and J. Xu, “Broad tuning of whispering-gallery modes in silicon microdisks,” Opt. Express 18(14), 14345–14352 (2010).
[Crossref] [PubMed]

L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

2004 (1)

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

1982 (1)

D. W. Hoffman and J. A. Thornton, “Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source,” J. Vac. Sci. Technol. 20(3), 355–358 (1982).
[Crossref]

Aharonovich, I.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Arbabi, A.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Armani, D.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Baker, C. G.

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Bekker, C.

Bowen, W. P.

Bowers, J. E.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

Brongersma, M. L.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98(4), 041102 (2011).
[Crossref]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Cardenas, J.

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light,” Phys. Rev. Lett. 115(16), 163902 (2015).
[Crossref] [PubMed]

Dai, D.

Dal Negro, L.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98(4), 041102 (2011).
[Crossref]

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Dutt, A.

El-Ella, H. A. R.

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Fan, S.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Farsi, A.

Fernandes, G.

Friedlein, J.

Gaeta, A. L.

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Goddard, L. L.

Gorodetsky, M. L.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Gossard, A. C.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

Guan, X.

Herr, T.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Hoffman, D. W.

D. W. Hoffman and J. A. Thornton, “Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source,” J. Vac. Sci. Technol. 20(3), 355–358 (1982).
[Crossref]

Holzwarth, R.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Hryciw, A. C.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98(4), 041102 (2011).
[Crossref]

Hu, E. L.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Hu, S.

S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, “Suspended Micro-Ring Resonator for Enhanced Biomolecule Detection Sensitivity,” Proc. SPIE 8933, 893306 (2014).
[Crossref]

Huang, Q.

Kalyuzhnyy, N. A.

Kappers, M. J.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Kekatpure, R. D.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98(4), 041102 (2011).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kravchenko, I. I.

S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, “Suspended Micro-Ring Resonator for Enhanced Biomolecule Detection Sensitivity,” Proc. SPIE 8933, 893306 (2014).
[Crossref]

Kryzhanovskaya, N. V.

Kulagina, M. M.

Lau, K.-M.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

Leaird, D. E.

Li, Q.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

Lipovskii, A. A.

Lipson, M.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23(16), 21527–21540 (2015).
[Crossref] [PubMed]

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light,” Phys. Rev. Lett. 115(16), 163902 (2015).
[Crossref] [PubMed]

S. Y. Shah, M. Zhang, R. Rand, and M. Lipson, “Master-Slave Locking of Optomechanical Oscillators Over a Long Distance,” Phys. Rev. Lett. 114(11), 113602 (2015).
[Crossref] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Liu, A. Y.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

Liu, T.-L.

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Liu, Y.

Liu, Z.

Luke, K.

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Martin, A.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Maximov, M. V.

McAuslan, D. L.

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Miller, S. A.

Min, B.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Mintairov, S. A.

Moiseev, E. I.

Monifi, F.

Nadtochiy, A. M.

Nevedomsky, V. V.

Niu, B.

Niu, N.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Novotny, L.

L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

Okawachi, Y.

Oliver, R. A.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Ozdemir, S. K.

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Qi, M.

Qin, K.

S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, “Suspended Micro-Ring Resonator for Enhanced Biomolecule Detection Sensitivity,” Proc. SPIE 8933, 893306 (2014).
[Crossref]

Ramelow, S.

Rand, R.

S. Y. Shah, M. Zhang, R. Rand, and M. Lipson, “Master-Slave Locking of Optomechanical Oscillators Over a Long Distance,” Phys. Rev. Lett. 114(11), 113602 (2015).
[Crossref] [PubMed]

Retterer, S. T.

S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, “Suspended Micro-Ring Resonator for Enhanced Biomolecule Detection Sensitivity,” Proc. SPIE 8933, 893306 (2014).
[Crossref]

Russell, K. J.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Ruvimov, S. A.

Sadler, T. C.

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Shah, S.

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light,” Phys. Rev. Lett. 115(16), 163902 (2015).
[Crossref] [PubMed]

Shah, S. Y.

S. Y. Shah, M. Zhang, R. Rand, and M. Lipson, “Master-Slave Locking of Optomechanical Oscillators Over a Long Distance,” Phys. Rev. Lett. 114(11), 113602 (2015).
[Crossref] [PubMed]

Shainline, J. M.

Sheridan, E.

Shi, Y.

Shostak, I. I.

St-Gelais, R.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Thornton, J. A.

D. W. Hoffman and J. A. Thornton, “Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source,” J. Vac. Sci. Technol. 20(3), 355–358 (1982).
[Crossref]

Troshkov, S. I.

Vahala, K. J.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Vashanova, K. A.

Wan, Y.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

Wang, C.

Wang, P.-H.

Wang, X.

Weiner, A. M.

Weiss, S. M.

S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, “Suspended Micro-Ring Resonator for Enhanced Biomolecule Detection Sensitivity,” Proc. SPIE 8933, 893306 (2014).
[Crossref]

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Woolf, A.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

Xu, J.

Xuan, Y.

Xue, X.

Yang, L.

Yerci, S.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98(4), 041102 (2011).
[Crossref]

Zadiranov, Y. M.

Zhang, M.

S. Y. Shah, M. Zhang, R. Rand, and M. Lipson, “Master-Slave Locking of Optomechanical Oscillators Over a Long Distance,” Phys. Rev. Lett. 114(11), 113602 (2015).
[Crossref] [PubMed]

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light,” Phys. Rev. Lett. 115(16), 163902 (2015).
[Crossref] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

Zheng, J.

Zhu, L.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Zhu, T.

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

Zhukov, A. E.

Am. J. Phys. (1)

L. Novotny, “Strong coupling, energy splitting, and level crossings: A classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

Appl. Phys. Lett. (5)

I. Aharonovich, A. Woolf, K. J. Russell, T. Zhu, N. Niu, M. J. Kappers, R. A. Oliver, and E. L. Hu, “Low threshold, room-temperature microdisk lasers in the blue spectral range,” Appl. Phys. Lett. 103(2), 021112 (2013).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K.-M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109(1), 011104 (2016).
[Crossref]

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98(4), 041102 (2011).
[Crossref]

N. Niu, T.-L. Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, “A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity,” Appl. Phys. Lett. 101(16), 161105 (2012).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh- Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Vac. Sci. Technol. (1)

D. W. Hoffman and J. A. Thornton, “Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source,” J. Vac. Sci. Technol. 20(3), 355–358 (1982).
[Crossref]

Nat. Nanotechnol. (1)

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (5)

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref] [PubMed]

S. Y. Shah, M. Zhang, R. Rand, and M. Lipson, “Master-Slave Locking of Optomechanical Oscillators Over a Long Distance,” Phys. Rev. Lett. 114(11), 113602 (2015).
[Crossref] [PubMed]

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light,” Phys. Rev. Lett. 115(16), 163902 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, “Suspended Micro-Ring Resonator for Enhanced Biomolecule Detection Sensitivity,” Proc. SPIE 8933, 893306 (2014).
[Crossref]

Other (2)

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

COMSOL Multiphysics is a finite-element multiphysics simulation tool. COMSOL AB.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematics of our integrated tuning of suspended microresonators. The suspended wire bridges are used to control the microheaters fabricated on the resonators without a cladding material. (a) We deposit a platinum microheater at the center of the resonator to achieve direct thermal contact for efficient heat transfer while isolating it from the optical mode at the resonator perimeter. The heater is connected to the contacts located tens of microns away from the resonator via suspended platinum wire bridges. The red perimeter depicts the optical whispering gallery mode of the resonator. (b) The side view of the device shows how the suspension of these wire bridges can electrically connect the heater to the contacts without a cladding layer and simultaneously avoid optical absorption. (c) An example of how this tuning approach can be scaled up for an array of two evanescently coupled suspended microresonators. Our approach allows independent tuning of each resonator to turn the optical coupling on and off on-demand. A scale bar is shown for reference.
Fig. 2
Fig. 2 The outline for fabricating tunable suspended microresonators with suspended wire bridges and microheaters. (a) The resonator and support structures for the electrical contacts and the fiber taper is defined using e-beam lithography. (b) Pt heater and contacts are sputter-deposited using contact lithography and lift-off. (c) The device is cladded with PECVD SiO2, later to be served as a sacrificial layer for the suspended Pt wire bridges. (d) Vias are etched on the PECVD SiO2 sacrificial layer to expose the microheater and the contacts for electrical connection. (e) Pt bridge wires are sputter-deposited to connect the heater and the contacts through the vias. The argon pressure during the deposition of the Pt film is chosen to ensure that the deposited metal film exhibits a tensile stress of about 100 MPa. (f) The resonator and the suspended wires are released simultaneously by wet etching in BOE. Critical point dryer is used to minimize evaporation damages.
Fig. 3
Fig. 3 (Left) Simulated Q factor limited by absorption loss from the metal suspended above the resonator. Simulated using COMSOL [21] for different gaps between the metal wires and the resonator edge, which are controlled by depositing thicker sacrificial PECVD SiO2 layer. (Right) Schematic of the cross section of the tunable suspended micro-resonator describing how the suspended wire bridges cross over the resonator edge.
Fig. 4
Fig. 4 False-colored scanning electron microscope image of the fabricated tunable suspended microresonators. (a) A single suspended microresonator (blue disk) with the proposed integrated heater and suspended Pt wire bridges (yellow) are shown. The Pt bridges are fully released, maintaining a small gap between the metal and the resonator edge for optical isolation. (b) A close-up of the suspended Pt wires in an evanescently coupled suspended microresonators array is shown. A common ground connects both heaters for the evanescently coupled suspended microresonators. Inset is an optical microscope image of device in (b).
Fig. 5
Fig. 5 Resonance detuning of the suspended microresonator with our integrated approach. The resonance wavelength at no heater power, initial detuning, is 1551.13 nm. For each spectrum, the solid line is the Lorentzian fit to the measurement. The temperatures of the resonator are extracted from the resonance detuning using the thermo-optic coefficient of Si3N4 [23]. The loaded Q factor is measured at each temperature, and does not decrease as we detune the resonance, demonstrating that the Q factor is not affected by the heating. The slight increase in the loaded Q and the change in transmission extinction observed at higher temperatures are likely due to slight drifts in the taper-resonator coupling conditions [24].
Fig. 6
Fig. 6 Controlling the coupling strength between two suspended microresonators. (Left) Images of the resonators are taken with an IR camera to ensure optical coupling between the resonators (see inset of Fig. 4(b) for an optical microscope image of the devices). (Right) As fabricated, the resonances of the device are centered around 1556.33 nm and 1556.34 nm for the left resonator (L) and the right resonator (R), respectively (dark blue spectrum, heater power = 0.72 mW). The resonance of R is split in 0.72 mW spectrum due to the existence and coupling between clockwise and counter-clockwise propagating mode (see Appendix). We tune the L resonator using its heater to induce a red thermo-optic shift. As we increase the temperature of L, the resonances of both resonators align (dark green spectrum, heater power = 3.28 mW) and from the IR camera image one can see that both resonators are in resonance. We further increase the temperature of L so that the L resonance crosses over the R resonance. We observe this full anti-crossing behavior with less than 7 mW of heater power. The dashed lines in the spectra plot are theoretical fittings for the detuning of the peaks.
Fig. 7
Fig. 7 Anti-crossing of the coupled resonators when redshifting the L resonance to cross the R resonance using less than 7 mW of heater power. The red points are peaks of the two resonators extracted from the measured spectra in Fig. 6. The blue line is the simulated lines according to Ref [25]. and Eq. (1), including the small thermal crosstalk between the two resonators. The dotted black lines are guides to the eye that represent resonance shifts of each resonator where there is no coupling. The laser wavelength (green line) is swept across the R resonant wavelength to take the inset IR images for independent confirmation of which resonator is in resonance.
Fig. 8
Fig. 8 Coupling dynamics in a system of evanescently coupled resonators. (a) There are different types of coupling. In each resonator, there is a coupling between clockwise (CW) mode and counter-clockwise (CCW) mode, βi = 1,2, due to side-wall scattering or other perturbation that splits the resonance of each resonator. In addition, the CW and CCW modes in the two resonators hybridize into symmetric and anti-symmetric supermodes spanning both resonators with coupling strength γ due to evanescent coupling. (b) The resonance splitting caused by βi, the coupling between CW and CCW modes, is shown at different coupling strengths with fixed evanescent coupling rate, γ. (c) The resonance splitting caused by γ, the coupling between symmetric and anti-symmetric supermodes, is shown at different coupling strengths with fixed CW and CCW coupling rate, βi.
Fig. 9
Fig. 9 Measured heater response time on the 40-μm resonator. The heater is driven with 5 kHz square wave with 1.25 V peak-to-peak. The left vertical axis is the heater voltage and the right vertical axis is the optical transmission of the resonator at a fixed wavelength. Rising and falling time are around 25 μs and 15 μs, respectively.
Fig. 10
Fig. 10 Intrinsic Q measurement of the L resonator in the evanescently coupled system of the inset of Fig. 4(b). The intrinsic Q is around 5.2 × 105, comparable to Si3N4 suspended microresonators fabricated without the heating circuit [5]. This implies that the heaters and the suspended wire bridges do not introduce optical loss. The coupling strength (β) between CW and CCW mode is about 2π × 610 MHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω s,as = ω avg ± Δ ω 2 4 + γ 2 ,

Metrics