Abstract

We present theoretically the transport of plasmonic waves in doped graphene tube, which is made by rolling planar graphene sheet into a cylinder and periodic doping is applied on it. It is shown that periodic modulation of the Fermi level along the tube can open gaps in the dispersion relations of graphene plasmons and eventually create plasmonic band structures. The propagation of graphene plasmons is forbidden within the bandgaps; while within the band, the plasmonic waves present axially-extended field distributions and propagate along the tubes, yet well confined around the curved graphene surface. Furthermore, the bandgaps, propagation constants and propagation lengths of the modes in plasmonic band structures are significantly tuned by varying the Fermi level of graphene, which provides active controls over the plasmonic waves. Our proposed structures here may provide an approach to dynamically control the plasmonic waves in graphene-based subwavelength waveguides.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies

Jigang Hu, Xiaohang Wu, Hongju Li, Enxu Yao, Weiqiang Xie, Wei Liu, Yonghua Lu, and Changjun Ming
J. Opt. Soc. Am. B 36(3) 697-704 (2019)

Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in graphene-integrated structures

Feng Liu, Tianrong Zhan, Alexander Y. Zhu, Fei Yi, and Wangzhou Shi
Opt. Express 24(2) 1480-1494 (2016)

Graphene surface plasmon off-axis superlens based on tilted one-dimensional Si/SiO2 gratings

Mengjia Lu, Yueke Wang, Zhifei Yao, and Chunyang Zhang
Appl. Opt. 58(1) 15-20 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  3. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  4. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  5. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  6. F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  7. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
    [Crossref]
  8. T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, Phys. Rev. B, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” 86, 165416 (2012).
  9. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  10. S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
    [Crossref] [PubMed]
  11. Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
    [Crossref]
  12. Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
    [Crossref]
  13. T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
    [Crossref] [PubMed]
  14. I. S. Lamata, P. Alonso-González, R. Hillenbrand, and A. Yu. Nikitin, “Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits,” ACS Photonics 2(2), 280–286 (2015).
    [Crossref]
  15. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
    [Crossref] [PubMed]
  16. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  17. A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
    [Crossref]
  18. W. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B 86(12), 125450 (2012).
    [Crossref]
  19. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref] [PubMed]
  20. A. Croy, D. Midtvedt, A. Isacsson, and J. M. Kinaret, “Nonlinear damping in graphene resonators,” Phys. Rev. B 86(23), 235435 (2012).
    [Crossref]
  21. S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100(20), 201105 (2012).
    [Crossref]
  22. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
    [Crossref]
  23. W. Wang and J. M. Kinaret, “Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects,” Phys. Rev. B 87(19), 195424 (2013).
    [Crossref]
  24. M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
    [Crossref] [PubMed]
  25. A. Yu. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B 90(4), 041407 (2014).
    [Crossref]
  26. T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
    [Crossref]
  27. Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, “Analytical model for plasmon modes in graphene-coated nanowire,” Opt. Express 22(20), 24322–24331 (2014).
    [Crossref] [PubMed]
  28. Y. Gao, G. Ren, B. Zhu, J. Wang, and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide,” Opt. Lett. 39(20), 5909–5912 (2014).
    [Crossref] [PubMed]
  29. R. J. Li, X. Lin, S. S. Lin, X. Liu, and H. S. Chen, “Tunable deep-subwavelength superscattering using graphene monolayers,” Opt. Lett. 40(8), 1651–1654 (2015).
    [Crossref] [PubMed]
  30. T. H. Xiao, L. Gan, and Z. Y. Li, “Graphene surface plasmon polaritons transport on curved substrates,” Photon. Res. 3(6), 300–307 (2015).
    [Crossref]
  31. T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Omnidirectional absorption and off-resonance field enhancement in dielectric cylinders coated with graphene layers,” J. Opt. Soc. Am. A 32(5), 943–948 (2015).
    [Crossref] [PubMed]
  32. D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, V. V. Temnov, H. I. Lee, and J. Mok, “Plasmonically induced magnetic field in graphene-coated nanowires,” Opt. Lett. 41(2), 396–399 (2016).
    [Crossref] [PubMed]
  33. A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
    [Crossref]
  34. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  35. Z. Wang, C. Y. Xia, S. Meloni, C. S. Zhou, and Y. Moreno, “Impact of social punishment on cooperative behavior in complex networks,” Sci. Rep. 3(1), 3055 (2013).
    [Crossref] [PubMed]
  36. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  37. H. J. Xu, W. B. Lu, W. Zhu, and Z. G. Dong, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
    [Crossref]
  38. Y. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B 85(24), 245409 (2012).
    [Crossref]
  39. T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
    [Crossref] [PubMed]
  40. H. W. Wu, F. Wang, Y. Q. Dong, F. Z. Shu, K. Zhang, R. W. Peng, X. Xiong, and M. Wang, “Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics,” Opt. Express 23(25), 32087–32097 (2015).
    [Crossref] [PubMed]
  41. M. Jung, P. Rickhaus, S. Zihlmann, P. Makk, and C. Schönenberger, “Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction,” Nano Lett. 16(11), 6988–6993 (2016).
    [Crossref] [PubMed]
  42. N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
    [Crossref] [PubMed]
  43. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
    [Crossref] [PubMed]

2016 (3)

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, V. V. Temnov, H. I. Lee, and J. Mok, “Plasmonically induced magnetic field in graphene-coated nanowires,” Opt. Lett. 41(2), 396–399 (2016).
[Crossref] [PubMed]

A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
[Crossref]

M. Jung, P. Rickhaus, S. Zihlmann, P. Makk, and C. Schönenberger, “Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction,” Nano Lett. 16(11), 6988–6993 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (9)

Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
[Crossref]

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

A. Yu. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B 90(4), 041407 (2014).
[Crossref]

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, “Analytical model for plasmon modes in graphene-coated nanowire,” Opt. Express 22(20), 24322–24331 (2014).
[Crossref] [PubMed]

Y. Gao, G. Ren, B. Zhu, J. Wang, and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide,” Opt. Lett. 39(20), 5909–5912 (2014).
[Crossref] [PubMed]

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
[Crossref] [PubMed]

2013 (5)

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

W. Wang and J. M. Kinaret, “Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects,” Phys. Rev. B 87(19), 195424 (2013).
[Crossref]

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref] [PubMed]

Z. Wang, C. Y. Xia, S. Meloni, C. S. Zhou, and Y. Moreno, “Impact of social punishment on cooperative behavior in complex networks,” Sci. Rep. 3(1), 3055 (2013).
[Crossref] [PubMed]

2012 (11)

H. J. Xu, W. B. Lu, W. Zhu, and Z. G. Dong, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Y. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B 85(24), 245409 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

W. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B 86(12), 125450 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

A. Croy, D. Midtvedt, A. Isacsson, and J. M. Kinaret, “Nonlinear damping in graphene resonators,” Phys. Rev. B 86(23), 235435 (2012).
[Crossref]

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100(20), 201105 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

2011 (4)

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2009 (2)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

2007 (2)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Alonso-González, P.

I. S. Lamata, P. Alonso-González, R. Hillenbrand, and A. Yu. Nikitin, “Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits,” ACS Photonics 2(2), 280–286 (2015).
[Crossref]

Apell, S. P.

W. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B 86(12), 125450 (2012).
[Crossref]

Arruda, T. J.

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Bao, Z.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
[Crossref] [PubMed]

Bludov, Y. V.

Y. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B 85(24), 245409 (2012).
[Crossref]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Bychkov, I. V.

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Chang, D. E.

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chen, H. S.

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Chui, S. T.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Croy, A.

A. Croy, D. Midtvedt, A. Isacsson, and J. M. Kinaret, “Nonlinear damping in graphene resonators,” Phys. Rev. B 86(23), 235435 (2012).
[Crossref]

Dai, Y.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Davoyan, A. R.

A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
[Crossref]

Dong, Y. Q.

H. W. Wu, F. Wang, Y. Q. Dong, F. Z. Shu, K. Zhang, R. W. Peng, X. Xiong, and M. Wang, “Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics,” Opt. Express 23(25), 32087–32097 (2015).
[Crossref] [PubMed]

Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
[Crossref]

Dong, Z. G.

H. J. Xu, W. B. Lu, W. Zhu, and Z. G. Dong, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Engheta, N.

A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, R. H.

Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
[Crossref]

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

Fang, Z.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Gan, L.

Gao, Y.

García de Abajo, F. J.

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100(20), 201105 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

García-Vidal, F. J.

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gómez-Santos, G.

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guinea, F.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Gullans, M.

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref] [PubMed]

Halas, N. J.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Han, D.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Hillenbrand, R.

I. S. Lamata, P. Alonso-González, R. Hillenbrand, and A. Yu. Nikitin, “Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits,” ACS Photonics 2(2), 280–286 (2015).
[Crossref]

Hu, Q.

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
[Crossref]

Hu, X.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Isacsson, A.

A. Croy, D. Midtvedt, A. Isacsson, and J. M. Kinaret, “Nonlinear damping in graphene resonators,” Phys. Rev. B 86(23), 235435 (2012).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jian, S.

Jung, M.

M. Jung, P. Rickhaus, S. Zihlmann, P. Makk, and C. Schönenberger, “Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction,” Nano Lett. 16(11), 6988–6993 (2016).
[Crossref] [PubMed]

Kinaret, J. M.

W. Wang and J. M. Kinaret, “Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects,” Phys. Rev. B 87(19), 195424 (2013).
[Crossref]

A. Croy, D. Midtvedt, A. Isacsson, and J. M. Kinaret, “Nonlinear damping in graphene resonators,” Phys. Rev. B 86(23), 235435 (2012).
[Crossref]

W. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B 86(12), 125450 (2012).
[Crossref]

Koppens, F. H.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Koppens, F. H. L.

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Kuzmin, D. A.

Lamata, I. S.

I. S. Lamata, P. Alonso-González, R. Hillenbrand, and A. Yu. Nikitin, “Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits,” ACS Photonics 2(2), 280–286 (2015).
[Crossref]

Lee, H. I.

Li, R. J.

Li, Z. Y.

Lian, Y.

Lin, S. S.

Lin, X.

Liu, H.

Liu, N.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
[Crossref] [PubMed]

Liu, X.

R. J. Li, X. Lin, S. S. Lin, X. Liu, and H. S. Chen, “Tunable deep-subwavelength superscattering using graphene monolayers,” Opt. Lett. 40(8), 1651–1654 (2015).
[Crossref] [PubMed]

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Low, T.

A. Yu. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B 90(4), 041407 (2014).
[Crossref]

Lu, W. B.

H. J. Xu, W. B. Lu, W. Zhu, and Z. G. Dong, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Lukin, M. D.

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref] [PubMed]

Makk, P.

M. Jung, P. Rickhaus, S. Zihlmann, P. Makk, and C. Schönenberger, “Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction,” Nano Lett. 16(11), 6988–6993 (2016).
[Crossref] [PubMed]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Martinez, A. S.

Martin-Moreno, L.

A. Yu. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B 90(4), 041407 (2014).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

Martín-Moreno, L.

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Meloni, S.

Z. Wang, C. Y. Xia, S. Meloni, C. S. Zhou, and Y. Moreno, “Impact of social punishment on cooperative behavior in complex networks,” Sci. Rep. 3(1), 3055 (2013).
[Crossref] [PubMed]

Midtvedt, D.

A. Croy, D. Midtvedt, A. Isacsson, and J. M. Kinaret, “Nonlinear damping in graphene resonators,” Phys. Rev. B 86(23), 235435 (2012).
[Crossref]

Mikhailov, S. A.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

Mok, J.

Moreno, Y.

Z. Wang, C. Y. Xia, S. Meloni, C. S. Zhou, and Y. Moreno, “Impact of social punishment on cooperative behavior in complex networks,” Sci. Rep. 3(1), 3055 (2013).
[Crossref] [PubMed]

Nikitin, A. Yu.

I. S. Lamata, P. Alonso-González, R. Hillenbrand, and A. Yu. Nikitin, “Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits,” ACS Photonics 2(2), 280–286 (2015).
[Crossref]

A. Yu. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B 90(4), 041407 (2014).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Peng, R. W.

H. W. Wu, F. Wang, Y. Q. Dong, F. Z. Shu, K. Zhang, R. W. Peng, X. Xiong, and M. Wang, “Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics,” Opt. Express 23(25), 32087–32097 (2015).
[Crossref] [PubMed]

Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
[Crossref]

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

Peres, N. M. R.

Y. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B 85(24), 245409 (2012).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Pinheiro, F. A.

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Ren, G.

Ren, T. L.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
[Crossref] [PubMed]

Rickhaus, P.

M. Jung, P. Rickhaus, S. Zihlmann, P. Makk, and C. Schönenberger, “Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction,” Nano Lett. 16(11), 6988–6993 (2016).
[Crossref] [PubMed]

Schlather, A.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Schönenberger, C.

M. Jung, P. Rickhaus, S. Zihlmann, P. Makk, and C. Schönenberger, “Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction,” Nano Lett. 16(11), 6988–6993 (2016).
[Crossref] [PubMed]

Schwartz, G.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
[Crossref] [PubMed]

Shavrov, V. G.

Shi, X.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Shu, F. Z.

Silveiro, I.

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100(20), 201105 (2012).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Stauber, T.

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Temnov, V. V.

Thongrattanasiri, S.

S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100(20), 201105 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Tian, H.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
[Crossref] [PubMed]

Tok, J. B. H.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Vasilevskiy, M. I.

Y. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B 85(24), 245409 (2012).
[Crossref]

Wang, C.

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

Wang, F.

Wang, J.

Wang, M.

H. W. Wu, F. Wang, Y. Q. Dong, F. Z. Shu, K. Zhang, R. W. Peng, X. Xiong, and M. Wang, “Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics,” Opt. Express 23(25), 32087–32097 (2015).
[Crossref] [PubMed]

Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
[Crossref]

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

Wang, W.

W. Wang and J. M. Kinaret, “Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects,” Phys. Rev. B 87(19), 195424 (2013).
[Crossref]

W. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B 86(12), 125450 (2012).
[Crossref]

Wang, Y.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, C. Y. Xia, S. Meloni, C. S. Zhou, and Y. Moreno, “Impact of social punishment on cooperative behavior in complex networks,” Sci. Rep. 3(1), 3055 (2013).
[Crossref] [PubMed]

Wu, H. W.

Xia, C. Y.

Z. Wang, C. Y. Xia, S. Meloni, C. S. Zhou, and Y. Moreno, “Impact of social punishment on cooperative behavior in complex networks,” Sci. Rep. 3(1), 3055 (2013).
[Crossref] [PubMed]

Xiao, T. H.

Xiong, X.

Xu, D. H.

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

Xu, H. J.

H. J. Xu, W. B. Lu, W. Zhu, and Z. G. Dong, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Zhan, T.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Zhang, K.

H. W. Wu, F. Wang, Y. Q. Dong, F. Z. Shu, K. Zhang, R. W. Peng, X. Xiong, and M. Wang, “Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics,” Opt. Express 23(25), 32087–32097 (2015).
[Crossref] [PubMed]

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

Zhou, C. S.

Z. Wang, C. Y. Xia, S. Meloni, C. S. Zhou, and Y. Moreno, “Impact of social punishment on cooperative behavior in complex networks,” Sci. Rep. 3(1), 3055 (2013).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
[Crossref]

Zhu, B.

Zhu, W.

H. J. Xu, W. B. Lu, W. Zhu, and Z. G. Dong, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Zi, J.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

Zihlmann, S.

M. Jung, P. Rickhaus, S. Zihlmann, P. Makk, and C. Schönenberger, “Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction,” Nano Lett. 16(11), 6988–6993 (2016).
[Crossref] [PubMed]

ACS Nano (3)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

ACS Photonics (3)

A. R. Davoyan and N. Engheta, “Salient features of deeply subwavelength guiding of terahertz radiation in graphene-coated fibers,” ACS Photonics 3(5), 737–742 (2016).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

I. S. Lamata, P. Alonso-González, R. Hillenbrand, and A. Yu. Nikitin, “Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits,” ACS Photonics 2(2), 280–286 (2015).
[Crossref]

Appl. Phys. Lett. (3)

Y. Zhou, Y. Q. Dong, R. H. Fan, Q. Hu, R. W. Peng, and M. Wang, “Asymmetric transmission of terahertz waves through a graphene-loaded metal grating,” Appl. Phys. Lett. 105(4), 041114 (2014).
[Crossref]

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100(20), 201105 (2012).
[Crossref]

H. J. Xu, W. B. Lu, W. Zhu, and Z. G. Dong, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012).
[Crossref]

Europhys. Lett. (1)

Y. Zhou, C. Wang, D. H. Xu, R. H. Fan, K. Zhang, R. W. Peng, Q. Hu, and M. Wang, “Tuning the dispersion relation of a plasmonic waveguide via graphene contact,” Europhys. Lett. 107(3), 34007 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (1)

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Nano Lett. (3)

M. Jung, P. Rickhaus, S. Zihlmann, P. Makk, and C. Schönenberger, “Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction,” Nano Lett. 16(11), 6988–6993 (2016).
[Crossref] [PubMed]

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. Bao, “Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene,” Nano Lett. 14(7), 3702–3708 (2014).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Photon. Res. (1)

Phys. Rev. B (10)

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

W. Wang and J. M. Kinaret, “Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects,” Phys. Rev. B 87(19), 195424 (2013).
[Crossref]

A. Croy, D. Midtvedt, A. Isacsson, and J. M. Kinaret, “Nonlinear damping in graphene resonators,” Phys. Rev. B 86(23), 235435 (2012).
[Crossref]

A. Yu. Nikitin, T. Low, and L. Martin-Moreno, “Anomalous reflection phase of graphene plasmons and its influence on resonators,” Phys. Rev. B 90(4), 041407 (2014).
[Crossref]

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

W. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B 86(12), 125450 (2012).
[Crossref]

Y. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B 85(24), 245409 (2012).
[Crossref]

Phys. Rev. Lett. (6)

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Sci. Rep. (1)

Z. Wang, C. Y. Xia, S. Meloni, C. S. Zhou, and Y. Moreno, “Impact of social punishment on cooperative behavior in complex networks,” Sci. Rep. 3(1), 3055 (2013).
[Crossref] [PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, Phys. Rev. B, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” 86, 165416 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of a uniformly electron-doped graphene tube. (b) Dispersion relation of the uniform graphene tube (denoted as G tube), where EF = 0.6 eV, and R = 1 μm. The inset shows the transmission spectrum of THz waves propagating for the 360μm-long distance along the tube. (c) The normalized | E z | 2 at the point of the dispersion relation indicated by the black arrow in (b). The tube is indicated by white dashed lines. (d) Schematic of a periodically doped graphene tube. The two sections are denoted by different colors. (e) Band structure of the periodic graphene tube, where P1 = P2 = 15 μm, R = 1 μm, EF1 = 0.7 eV, EF2 = 0.5 eV, and the azimuthal index is zero (m = 0). The inset shows the transmission spectrum of THz waves propagating for 12 periods (the total distance is 360 μm) along the tube. (f) The normalized | E z | 2 at the point of the band structure indicated by the black arrow in (e). The tube is denoted by white dashed lines.
Fig. 2
Fig. 2 Band structures of the periodically doped graphene tubes with (a) m = 0, (b) m = 1 and (c) m = 2. The parameters we chose are: P1 = P2 = 2 μm, R = 1 μm, EF1 = 0.7 eV, and EF2 = 0.5 eV. (d), (e) and (f) are the normalized at the x-z plane at the edges of the first band gaps indicated by the black arrows in (a), (b) and (c), respectively. The tubes are indicated by white dashed lines. (g), (h) and (i) are the corresponding normalized at the x-y plane, showing uniform, dipole-like and quadruple-like profiles around the tube, respectively.
Fig. 3
Fig. 3 (a) kz of the plasmonic modes plotted as functions of EF1. The frequency is fixed at 20 THz, P1 = P2 = 2 μm, R = 1 μm, and EF2 = 0.5 eV. Blue, black, and red curves respectively indicate kz of the modes with m = 0, m = 1 and m = 2. (b) The upper panel shows the central angular frequency ω of the band gaps as functions of EF1. Only the first and the second gaps are plotted, denoted by the first number in the legends. Modes with m = 0, m = 1 and m = 2 are respectively denoted by blue, black, and red curves. The lower panel shows the corresponding widths of the band gaps as functions of EF1. At EF1 = 0.5 eV, all gaps are closed.
Fig. 4
Fig. 4 (a) The propagation length, L, and wavelength normalized propagation length, L/λ, of the plasmonic mode under the first band gap in Fig. 1(e) as functions of the frequency. The remaining parameters are P1 = P2 = 15 μm, R = 1 μm, EF1 = 0.7 eV, EF2 = 0.5 eV, and m = 0. (b) Normalized propagation lengths as functions of EF1 at two different frequencies. Other parameters are denoted therein.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E z / H z =exp(i k z z) n a n B m ( k r,n r)exp(i2πnz/p)exp(imθ) .
| K m δ n,n' 0 I m δ n,n' 0 β n K m δ n,n' α n k r n K ' m δ n,n' β n I m δ n,n' α n k r n I ' m δ n,n' α n k r n K ' m δ n,n' σ ¯ nn' K m β n K m δ n,n' α n k r n I ' m δ n,n' σ ¯ nn' I m β n I m δ n,n' σ ¯ nn' β n' K m K m σ ¯ nn' α n' k r n' K ' m σ ¯ nn' β n' I m I m σ ¯ nn' α n' k r n' I ' m |=0.

Metrics