Abstract

A high visibility Hong-Ou-Mandel (HOM) interference between two independently prepared photons plays an important role in various photonic quantum information processing. In a standard HOM experiment using photons generated by pulse-pumped spontaneous parametric down conversion (SPDC), larger detection time windows than the coherence time of photons have been employed for measuring the HOM visibility and/or drawing the HOM dip. If large amounts of stray photons continuously exist within the detection time windows, employing small detection time windows is favorable for reducing the effect of background noises. Especially, such a setup is helpful for the HOM experiment using continuous wave (cw)-pumped SPDC and the time-resolved coincidence measurement. Here we argue that the method for determining the HOM visibility used in the previous cw experiments tends to suffer from distortion arising from biased contribution of the background noises. We then present a new method with unbiased treatment of the cw backgrounds. By using this method, we experimentally demonstrate a high visibility HOM interference of two heralded telecom photons independently generated by SPDC with employing cw pump light. An observed HOM visibility is 0.87 ± 0.04, which is as high as those observed by using pulse-pumped SPDC photons.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally resolved Hong-Ou-Mandel interference between independent photon sources

Rui-Bo Jin, Thomas Gerrits, Mikio Fujiwara, Ryota Wakabayashi, Taro Yamashita, Shigehito Miki, Hirotaka Terai, Ryosuke Shimizu, Masahiro Takeoka, and Masahide Sasaki
Opt. Express 23(22) 28836-28848 (2015)

Measurement of photon indistinguishability to a quantifiable uncertainty using a Hong-Ou-Mandel interferometer

Peter J. Thomas, Jessica Y. Cheung, Christopher J. Chunnilall, and Malcolm H. Dunn
Appl. Opt. 49(11) 2173-2182 (2010)

Measuring optical tunneling times using a Hong-Ou-Mandel interferometer

D. J. Papoular, P. Cladé, S. V. Polyakov, C. F. McCormick, A. L. Migdall, and P. D. Lett
Opt. Express 16(20) 16005-16012 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [Crossref]
  2. X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
    [Crossref] [PubMed]
  3. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
    [Crossref]
  4. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  5. H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
    [Crossref]
  6. T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
    [Crossref] [PubMed]
  7. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
    [Crossref]
  8. P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
    [Crossref]
  9. M. Tanida, R. Okamoto, and S. Takeuchi, “Highly indistinguishable heralded single-photon sources using parametric down conversion,” Opt. Express 20, 15275–15285 (2012).
    [Crossref] [PubMed]
  10. A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
    [Crossref] [PubMed]
  11. Y. Tsujimoto, Y. Sugiura, M. Ando, D. Katsuse, R. Ikuta, T. Yamamoto, M. Koashi, and N. Imoto, “Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength,” Opt. Express 23, 13545–13553 (2015).
    [Crossref] [PubMed]
  12. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
    [Crossref]
  13. M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
    [Crossref]
  14. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mw sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled zn:linbo3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
    [Crossref] [PubMed]
  15. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with gifford-mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
    [Crossref] [PubMed]
  16. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
    [Crossref]
  17. R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
    [Crossref]
  18. B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
    [Crossref]
  19. D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
    [Crossref]
  20. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
    [Crossref] [PubMed]
  21. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [Crossref]
  22. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref] [PubMed]
  23. S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).
  24. A. Scherer, B. C. Sanders, and W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
    [Crossref] [PubMed]
  25. C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
    [Crossref]

2016 (1)

2015 (2)

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Y. Tsujimoto, Y. Sugiura, M. Ando, D. Katsuse, R. Ikuta, T. Yamamoto, M. Koashi, and N. Imoto, “Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength,” Opt. Express 23, 13545–13553 (2015).
[Crossref] [PubMed]

2014 (1)

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

2013 (3)

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with gifford-mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref] [PubMed]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

2012 (4)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

M. Tanida, R. Okamoto, and S. Takeuchi, “Highly indistinguishable heralded single-photon sources using parametric down conversion,” Opt. Express 20, 15275–15285 (2012).
[Crossref] [PubMed]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

2011 (2)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

A. Scherer, B. C. Sanders, and W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
[Crossref] [PubMed]

2010 (1)

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

2009 (2)

2008 (2)

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

2007 (1)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

2006 (1)

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

2005 (1)

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

2003 (1)

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

2002 (1)

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

1997 (1)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Aboussouan, P.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Alibart, O.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Andersen, U. L.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Ando, M.

Anisimova, E.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Asobe, M.

Aspelmeyer, M.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

Baldi, P.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Bell, B.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Beveratos, A.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

Braunstein, S. L.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Brown, K. R.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Chen, S.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Chen, T.-Y.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Chen, Y.-A.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Clark, A.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Collins, D.

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

Curty, M.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Dakic, B.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

Duan, L.-M.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Franson, J. D.

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

Gehring, T.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Halder, M.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

Hänsch, T. W.

Heilmann, R.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Herbst, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Hong, F.-L.

Huttner, B.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Ikuta, R.

Imoto, N.

Jacobs, B. C.

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

Jacobsen, C. S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Jennewein, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Jorel, C.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

Kaltenbaek, R.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

Katsuse, D.

Kim, J.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Koashi, M.

Kobayashi, T.

Kofler, J.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Kropatschek, S.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Labonté, L.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Lloyd, S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Lo, H.-K.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Lu, C.-Y.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Lu, S.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Ma, X.-S.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Makarov, V.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Marcikic, I.

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Martin, A.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Matsuki, K.

Maunz, P.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

McMillan, A.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Mech, A.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Miki, S.

Monroe, C.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Mukai, T.

Muller, A.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Naylor, W.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Nishida, Y.

Nishikawa, T.

Nolte, S.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Okamoto, R.

Ostrowsky, D. B.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Ottaviani, C.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Ozawa, A.

Pan, J.-W.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Pirandola, S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Pittman, T. B.

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

Prevedel, R.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

Qi, B.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Rarity, J.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Raussendorf, R.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Riedmatten, H. d.

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Ruthven, A.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Sanders, B. C.

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Scarani, V.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

Scheidl, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Scherer, A.

Schmiedmayer, J.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

Spedalieri, G.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Sugiura, Y.

Szameit, A.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Takeuchi, S.

Tanida, M.

Tanzilli, S.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Terai, H.

Thew, R. T.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

Tian, J.-R.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Tillmann, M.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Tittel, W.

A. Scherer, B. C. Sanders, and W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
[Crossref] [PubMed]

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Tsujimoto, Y.

Ursin, R.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Wadsworth, W.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Walther, P.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Wang, D.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Wang, Z.

Weedbrook, C.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Wei, Z.-Y.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Weinfurter, H.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Wittmann, B.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Yamamoto, T.

Yamashita, T.

Yang, T.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Yin, J.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Yuan, Z.-S.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Zbinden, H.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Zeilinger, A.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

Zhang, J.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Zhang, Q.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Zhao, B.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Zukowski, M.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Applied Physics Letters (1)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Journal of Modern Optics (1)

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

Nat. Photonics (1)

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Nature (2)

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Nature Photonics (1)

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Nature Physics (1)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

New Journal of Physics (1)

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

Opt. Express (5)

Optica (1)

Phys. Rev. A (5)

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Phys. Rev. Lett. (3)

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Scientific reports (1)

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The schematic diagram of the HOM interference. The relative delay is adjusted by changing the timing of the photon in mode 2. The widths of the coincidence windows at D3 and D4 are set to be infinitely larger than the wavepacket duration. The HOM interference is observed when the photons in mode 1 and mode 2 arrive at the HBS simultaneously. (b) The sketch of the single detection probability at D3 (D4). (c) The sketch of the coincidence probability between D3 and D4.

Fig. 2
Fig. 2

The configurations for the detection time windows. Each time window is divided into the two temporal modes x and y. The solid and dashed wavepackets correspond to the light wavepackets coming from mode 1 and mode 2, respectively. (a,b) Each of the time windows is set to be much larger than the wavepacket duration. Two incoming wavepackets at D3(D4) are shown without time delay (a) and with time delay T (b). (c,d) Each of the time windows is set to be shorter than the wavepacket duration for suppressing stray photon detection. Two incoming wavepackets at D3(D4) are shown without time delay (c) and with time delay T (d).

Fig. 3
Fig. 3

(a) The experimental setup of a photon pair source. The cw pump beam at 780 nm is obtained by the second-harmonic generation based on a periodically-poled lithium niobate waveguide (PPLN/W) pumped by an external cavity diode laser working at 1560 nm. Non-degenerate photon pairs are generated by SPDC by another PPLN/W. (b) The experimental setup of the HOM interference. We performed the experiment of the HOM interference between photons at 1541 nm which are heralded by the photon detection at D1 and D2 with a time difference of Δt.

Fig. 4
Fig. 4

The relations between two-fold coincidence counts and detection timings. The red solid curves are the Gaussian fit to the obtained data. (a) The result of the measurement of the timing jitter. The pump power coupled to PPLN/W is set to be 3.5 μW, and we directly connected the output of the FBGs (3 nm) to D1 & D3. The other combinations of detectors (D1, D2), (D1, D4) and (D2, D3) are almost the same as (a). (b) The measurement result of the coherence time τ. The pump power coupled to PPLN/W is set to be 2.5 mW, and we used FBG1580(10 pm) and FBG1541(30 pm).

Fig. 5
Fig. 5

The coincidence counts between (a) D1 & D2 and (b) D1 & D3, respectively. (c) The three-fold coincidence among D1, D2 and D3 for the start signal of D1. The delay time of the stop signal of D2 is chosen to be Δt = 2.6 ns. (d) The three-fold coincidence among D1, D2 and D3 for the start signal of D1. The delay time is chosen such that Δt is equal to the time lag between photons coming from long and short paths. During the experiment, the pump power coupled to PPLN/W is set to be 2.5 mW.

Fig. 6
Fig. 6

(a) The setup for g ex ( 2 ) measurement. The signal photons which include temporally-continuous stray photons from the long arm and the stray photons from the short arm are mixed at a HBS. g ex ( 2 ) is obtained by the single counts of D3(4) and coincidence counts between D3 & D4 conditioned on photon detection at D1. (b) The single counts at D3 conditioned on photon detection at D1. χ is estimated from the single count probability of the signal and stray photons (S3 = η3(s + n)/2) and that of stray photons (S3,∞ = η3n) conditioned on photon detection at D1.

Fig. 7
Fig. 7

The left figure shows the photon distribution considered in the main text. The right figure presents the sketch in the case where additional stray photons in other modes are detected.

Tables (1)

Tables Icon

Table 1 The pump power dependence of V, Vtheory, χ and g ex ( 2 ).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V theory = ( 1 χ ) 2 g s ( 2 ) + χ 2 g n ( 2 ) + ( 1 + χ ) 2 ,
V theory = ( 1 χ ) 2 ( 1 + χ ) 2 ( 1 + g ex ( 2 ) ) .
χ = n s = S 3 , 2 S 3 S 3 , .
P 0 = η 3 η 4 ( 1 4 ( s 2 g s ( 2 ) + n 2 g n ( 2 ) ) + 2 N 2 + 4 N ( s + n ) + 2 s n + 2 : N ^ 3 x N ^ 4 x : ) .
P = η 3 η 4 ( 1 2 ( s 2 g s ( 2 ) + n 2 g n ( 2 ) ) + 2 N 2 + 4 N ( s + n ) + 1 2 ( s + n ) 2 + 2 : N ^ 3 x N ^ 4 x : ) .
g ex ( 2 ) = C 34 S 3 S 4 = s 2 g s ( 2 ) + n 2 g n ( 2 ) + 4 N ( s + n ) + 4 : N ^ 3 x N ^ 4 x : ( s + n + 2 N ) 2 .
V theory = ( 1 χ ) 2 ( 1 + χ ) 2 ( 1 + g ex ( 2 ) ) ,

Metrics